Skip to main content

Effect of Lag Damper Failure on Helicopter Ground Resonance

This paper examines ground resonance of a helicopter with a 4-bladed rotor with degradation in one of the lag dampers. The analysis is conducted with lag equations in individual blade coordinates solved using Floquet theory, lag equations in multi-blade coordinates solved using Floquet theory, and lag equations in multi-blade coordinates simplified using a constant coefficient approximation and then solved as an eigenvalue problem. From the study it was observed that regardless of whether the blade lag motions are in individual or multi-blade coordinates, the predicted stability levels are identical if the analysis is conducted using Floquet theory. In multi-blade coordinates, collective and differential lag needs to be retained in the analysis, unlike the case of a classical ground resonance analysis where only the cyclic lag modes and body motions are required. Using the constant coefficient approximation in multi-blade coordinates it is equivalent to smearing the damping loss of a single damper equally over all the damper. With the constant coefficient approximation predicts a smaller reduction in damping with damper degradation than the Floquet method, with the differences increasing as the level of degradation increases. For a completely failed damper, the loss in system damping predicted using the constant coefficient approximation was 46% of that from the Floquet analysis for an articulated rotor, and 55% for a hingeless rotor.

Reference

Whitt, J. and Gandhi, F., "Effect of Lag Damper Failure on Helicopter Ground Resonance ,"

Proceedings of the Vertical Flight Society 78th Annual Forum, Fort Worth, Texas, USA, May 10-12, 2022.