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ABSTRACT 

This paper examines ground resonance of a helicopter with a 4-bladed rotor with degradation in one of the lag dampers.  

The analysis is conducted with lag equations in individual blade coordinates solved using Floquet theory, lag equations 

in multi-blade coordinates solved using Floquet theory, and lag equations in multi-blade coordinates simplified using 

a constant coefficient approximation and then solved as an eigenvalue problem.  From the study it was observed that 

regardless of whether the blade lag motions are in individual or multi-blade coordinates, the predicted stability levels 

are identical if the analysis is conducted using Floquet theory.  In multi-blade coordinates, collective and differential 

lag needs to be retained in the analysis, unlike the case of a classical ground resonance analysis where only the cyclic 

lag modes and body motions are required.  Using the constant coefficient approximation in multi-blade coordinates it 

is equivalent to smearing the damping loss of a single damper equally over all the damper.  With the constant 

coefficient approximation predicts a smaller reduction in damping with damper degradation than the Floquet method, 

with the differences increasing as the level of degradation increases.  For a completely failed damper, the loss in 

system damping predicted using the constant coefficient approximation was 46% of that from the Floquet analysis for 

an articulated rotor, and 55% for a hingeless rotor. 

 

 

INTRODUCTION 1 

It is well known that helicopters with articulated or soft in-

plane hingeless/bearingless main rotors are susceptible to 

ground resonance instability when coalescence of the 

marginally damped rotor lead-lag and fuselage modes occurs 

(Refs. 1–3).  The widely adopted solution to overcoming the 

ground resonance problem is through the introduction of 

auxiliary damping, with lead-lag dampers on the main rotor 

and landing gear dampers for fuselage mode damping.  While 

other methods to improve aeromechanical stability have also 

been considered in the literature (e.g., use of rotor aeroelastic 

couplings, Refs. 4–9, active control, Refs. 10–13, or through 

tailoring the stiffness properties of the landing gear, Ref. 14), 

auxiliary dampers remain the most widely used solution.  In 

using auxiliary dampers, the helicopter designer or OEM must 

ensure that the dampers are sized to alleviate ground 

resonance in all operating conditions, e.g., with change in 

aircraft gross weight, or ground contact conditions.   

While the landing gear dampers undergo loading only 

when the aircraft is on the ground, the lead-lag dampers 

undergo periodic loading through the entire flight; thus 

accumulating many cycles over the course of their operating 

lives. In addition, the lead-lag dampers can also experience 

very large temperature variations, and large amplitude and 
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multi-frequency excitations, putting them in harsh overall 

operating conditions.  Yet, the effect of lead-lag damper 

degradation or failure on ground resonance has only been 

considered minimally in the literature (Ref. 15).  The present 

study seeks to address this question, and systematically 

examine the effect of degradation and failure in one of the 

lead-lag dampers on a helicopter’s ground resonance 

stability.  

ANALYSIS  

The present study considers a 4-bladed rotor (N=4), with 

the blades each undergoing rigid body in-plane rotations 

about their lag hinges.  These lag motions, in the rotating 

system, can be described using individual blade coordinates: 

1, 2, 3 and 4.  Longitudinal and lateral translations of the 

rotor hub (𝑥̅ and 𝑦̅) are also considered.  The resulting 

combined system, with six degrees-of-freedom, is presented 

in Eq. 1.  Aerodynamic forces, which are not a dominant 

factor in ground resonance, are neglected.  It should be noted 

that with the lag motions represented using individual blade 

coordinates, the equations contain non-negligible periodic 

terms.  Applying a constant coefficient approximation would 

be infeasible as it would entirely suppress the rotor-fuselage 

coupling (critical to the development of ground resonance), 

but the system’s stability characteristics could be correctly 
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evaluated using Floquet Transition Matrix theory (Refs. 16, 2 

and 3).  In Eq. 1,  represents the rotational speed of the rotor, 

and the definition and values of the rotor-body parameters 𝑆𝜁
∗, 

𝑀𝑥
∗,  𝑀𝑦

∗ , 𝜔𝑥, 𝜔𝑦 and 𝜈𝜁 , which appear in standard ground 

resonance analyses, are provided in Table 1. The definition 

and values of system damping parameters 𝜁𝑥, 𝜁𝑦  and 𝐶𝜁/𝐼𝜁 , 

are provided in Table 2.  Specific to the present study, 𝛼1 

represents the degradation in blade 1 damper properties, with  

𝛼1=0 corresponding to no degradation whatsoever 

(completely healthy damper), 𝛼1=1 corresponding to a 

completely failed damper, and intermediate values 

corresponding to varying levels of degradation. 

Next, the coupled rotor-body equations are transformed 

to multi-blade coordinates, with o (collective lag), 2 

(differential lag), and 1c and 1s (cyclic lag degrees of 

freedom), in place of individual blade motions (1, 2, 3 and 

4).  The coupled system, after transformation, is presented in 

Eq. 2, with the terms C11– C44 defined in Eq. 3, and the terms 

K13, K14, K23, K24, K33, K34, K43 and K44 defined in Eq. 

4.  It should be noted that when 𝛼1=0 (no degradation or 

damage in damper 1), all the periodic terms in Eq. 2 disappear, 

and the collective and differential lag equations decouple 

from the rest of the system.  This essentially returns the 

classical 4DOF (1c, 1s, 𝑥̅, 𝑦̅) Coleman-Feingold constant 

coefficient system that can be solved as an eigenvalue 

problem to analyze ground resonance.  With 1 ≠ 0, the 

collective (o) and differential (2) lag equations do not 

decouple from the cyclic lag and body equations, and the 

periodic terms in the equation require the use of Floquet 

theory for stability analysis. 

If the constant coefficient approximation is applied to Eq. 

2, the terms in Eq. 3 and 4 simplify to those in Eq. 5 and 6.  

The collective and differential lag equations are coupled to 

each other (for 1 ≠ 0), but are decoupled from the 1c, 1s, 𝑥̅, 

𝑦̅ system.  As it turns out, using the constant coefficient 

approximation is mathematically equivalent to smearing the 

loss of damping in damper 1 over the number of blades on the 

rotor, and in effect replacing 𝐶𝜁  everywhere in the classical 

Coleman-Feingold equations by 𝐶𝜁 (1 −
𝛼1

𝑁
).  Using the 

constant coefficient approximation after transforming to 

multi-blade coordinates allows for the solution of a simple 

eigenvalue problem instead of using Floquet theory for 

stability analysis, although it can be expected that there would 

be some error associated with the approximation (equivalent 

to smearing the loss in damping of a single damper equally 

over all the dampers).   

This study considers both an articulated rotor with a non-

dimensional rotating lag frequency of 𝜈𝜁  = 0.285/rev, and a 

soft in-plane hingeless rotor with a 𝜈𝜁  = 0.65/rev at a 300 RPM 

(5 Hz) nominal rotational speed.  Using the above for rotor 

lag frequencies, the parameters in Table 1, and first setting 

rotor and body damping parameters (𝐶𝜁 ,  𝜁𝑥 and 𝜁𝑦) to zero, 

the modal frequencies and modal damping, in multi-blade 

coordinates, are shown in Figs. 1 and 2 for the articulated 

rotor and in Figs. 3 and 4 for the hingeless rotor.  For the 

articulated rotor, the regressing lag mode coalesces with 

body-x mode between 2.2–3 Hz, and with body-y mode 

between 3.3–5 Hz.  The damping of the coupled regressing 

lag and body modes goes negative over those ranges 

(implying the system suffers from ground resonance 

instability).  Similarly, for the hingeless rotor, coalescence of 

the regressing lag mode with body-x and body-y modes is 

observed between 5–5.2 Hz and 5.8–6.6 Hz, respectively, and 

the system is again observed to be unstable over those ranges.  

The instability of the hingeless rotor is seen to be milder than 

the articulated rotor, as expected.  By trial and error, a 

combination of fuselage and lag damping is determined that 

would completely stabilize the system and eliminate ground 

resonance.  The values of damping parameters 𝜁𝑥, 𝜁𝑦  and 

𝐶𝜁/𝐼𝜁 , are provided in Table 2 for both the articulated and 

hingeless cases. 

 

ARTICULATED ROTOR RESULTS AND 

DISCUSSION 

Consider, first, an isolated rotor (with no body motion, 𝑥̅= 0, 

𝑦̅=0) where the lag motion of the blades is represented using 

individual blade coordinates (1, 2, 3 and 4).  Eliminating 

the body degrees-of-freedom in Eq. 1 results in a constant 

coefficient system, and the modal frequencies and decay rates 

can be easily calculated by solving an eigenvalue problem.  

Figure 5 shows the modal frequencies, and Fig. 6 shows the 

decay rates for the healthy rotor, as well as with increasing 

degradation in damper 1.  The modes are uncoupled and 

simply correspond to the motion of each individual blade, 

with the modal frequencies corresponding to the blade lag 

frequency in the rotating system (𝜔𝜁 = √𝑆𝜁
∗𝑒̅ Ω).  In the 

absence of any damper degradation, the decay rate of all the 

modes (corresponding to the motion of the individual blades) 

are identical, as expected.  When damper 1 is degraded (1 ≠ 

0), the decay rates for three modes corresponding to motions 

of blades 2, 3, and 4, remain the same as the nominal, while 

the decay rate for the mode corresponding to motion of blade 

1 decreases in proportion to the value of 1.  For 1 = 1 

(complete failure of damper 1), the decay rate for the mode 

corresponding to motion of blade 1 goes to zero. 

Next, the stability characteristics are examined for the 

coupled rotor-body system with the lag motions still 

represented using individual blade coordinates (Eq. 1).  The 

system has periodic coefficients and stability is examined 

using Floquet Transition Matrix theory.  It is again noted that 

attempting to use a constant coefficient approximation would 

simply eliminate all rotor-body coupling, making it unsuitable 

for ground resonance analysis.  Using Floquet Transition 

Matrix theory, Fig. 7 shows the minimum modal decay rate 

for increasing degradation levels of blade 1 damper (from 1 

= 0, healthy damper; to 1 = 1, completely failed damper). 

We consider next the system with the rotor lag motions 

represented in multi-blade coordinates (Eq. 2).  First, the 

isolated rotor is considered (with no body motion, 𝑥̅= 0, 𝑦̅=0).   
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Even without body motion, the equations contain 

periodic terms when damper degradation is present (1 ≠ 0).  

Using Floquet Transition Matrix theory results in decay rate 

predictions (not shown in the paper) similar to those seen in 

Fig. 6.  For 1 = 0 (no damper 1 degradation), four modes with 

equal decay rate at the same levels as in Fig. 6 are observed.  

For increasing levels of degradation, three modes remain 

unchanged whereas the decay rate of the fourth mode reduces, 

similar to what was seen in Fig. 6. 

With the body motions included (𝑥̅ ≠ 0, 𝑦̅ ≠ 0) and the 

rotor lag motions still represented using multi-blade 

coordinates (Eq. 2), Floquet Transition Matrix theory was 

used to evaluate the coupled system stability characteristics, 

and the modal decay rate for the lowest damped mode is 

presented in Fig. 8 for increasing levels of degradation.  These 

results mirror the predictions in Fig. 7, where the rotor 

motions were represented in individual blade coordinates.   

In the classical Coleman-Feingold ground resonance 

analysis, which considers identical blades/dampers and 

represents the rotor lag motions in multi-blade coordinates 

(Refs. 1 – 3), the equations have constant coefficients and the 

stability characteristics can conveniently be evaluated by 

solving an eigenvalue problem.  Although degradation in 

damper 1 introduces periodic terms in the rotor-body 

equations (Eq. 2), as noted in the Analysis section, a constant 

coefficient approximation could still be applied, followed by 

the solution of an eigenvalue problem, instead of employing 

Floquet Transition Matrix theory.  Such an approach is 

frequently taken for rotor aeroelastic stability analysis in 

forward flight (Refs. 2, 3) with the constant coefficient 

approximation applied to the periodic terms in the linearized 

equations, and the stability predictions generally compare 

well with those from Floquet Transition matrix theory at low 

to moderate advance ratios.  Figure 9 shows the stability 

predictions from an eigenvalue analysis following the 

application of the constant coefficient approximation to Eq. 2 

(with matrix terms in Eq. 5 and 6).  The damping levels 

predicted are higher than observed in Fig. 8, especially for 

higher levels of degradation.  Figure 10 shows the minimum 

damping (at the bottom of the “resonance bucket” in Figs. 7–

9), as a function of degradation level (1).  With the constant 

coefficient approximation, the reduction in damping varies 

linearly with level of degradation.  Using Floquet Transition 

Matrix theory to properly account for the periodic terms in the 

system when damper degradation is present results in lower 

damping predictions, with the difference from the constant 

coefficient results increasing progressively with increasing 

1.  In Fig. 10, at 20% damper degradation (1=0.2), the loss 

in damping predicted using constant coefficient 

approximation is 85% of the loss in damping from Floquet 

theory.  In comparison, at 50% and 100% damper degradation 

(1=0.5 and 1), the predicted loss in damping with the 

constant coefficient approximation is 66% and 46% 

respectively of the Floquet predictions. 

In the classical Coleman-Feingold ground resonance 

analysis with identical blades/dampers and rotor lag motions 

in multi-blade coordinates, only the rotor cyclic lag motions 

(1c and 1s) and fuselage motions (𝑥̅  and  𝑦̅ ) are retained, 

and the rotor collective and differential lag motions (o and 

2) have no participation.  Eliminating collective and 

differential lag motions in Eq. 2 (by removal of first two rows 

and columns) the system stability was reanalyzed using 

Floquet theory.  It should be noted that when damper 1 

degradation is introduced, even after the removal of collective 

and differential lag motions, periodic terms will still be 

present in Eq. 2, specifically in the C33, C34, C43 and C44 

terms in the damping matrix and the K33, K34, K43 and K44 

terms in the stiffness matrix.  The stability characteristics with 

the removal of the collective and differential motions is 

shown in Fig. 11.  A significant over-prediction of damping 

levels is observed, relative to damping predictions when all 

the rotor lag modes are included.  In fact, the damping 

predictions with the collective and differential modes 

eliminated are very similar to those previously seen in Fig. 10 

using a constant coefficient approximation.  From the above 

it is clear that when there is degradation or failure in a lag 

damper, it is critical to retain the collective and differential 

lag modes (along with the cyclic lag modes) when analyzing 

ground resonance, and eliminating these modes, as is done in 

a classical Coleman-Feingold ground resonance analysis, 

would lead to erroneous predictions of stability levels. 

When using multi-blade coordinates, although the 

constant coefficient approximation over-predicts the damping 

levels when there is damper degradation/failure (Fig. 10), it is 

nevertheless interesting to delve deeper.  To do so, the 

fuselage motion is suppressed (𝑥̅=0, 𝑦̅=0), and after 

eliminating the last two rows and columns in the matrices in 

Eq. 2, the constant coefficient approximation is again applied 

and the eigenvalue problem is solved.  Figure 12 shows the 

modal frequencies with 50% damper 1 degradation (1=0.5), 

and Figs. 13 and 14, respectively, show the modal decay rates 

corresponding to 50% damper 1 degradation, and complete 

damper 1 failure (1= 1).  The modal frequencies in Fig. 12 

are unchanged from the case when there is no damage (1=0), 

and the collective/differential lag modes, the progressing and 

regressing modes are clearly identified.  However, while the 

collective and differential modes for the undamaged case 

were decoupled, the two modes are completely coupled here 

(determined through the examination of the eigenvectors).  In 

fact, one of the coupled modes is o+2 and the other is o–2, 

as shown in Fig. 15.  In the decay rate plots (Figs. 13 and 14) 

the decay rate of one of the coupled collective/differential 

modes is seen to remain unchanged from the level for all the 

modes when there is no damper damage/degradation.  The 

decay rates for the progressing and regressing modes are 

identical and show a reduction.  Finally, the decay rates of the 

other coupled collective/differential mode show twice the 

reduction seen in the progressing/regressing modes.  One of 

the coupled collective/differential modes shown in Fig. 15 

contains the damaged blade, and the other one does not.  The 

mode with the highest damping in Figs. 13 and 14, unchanged 

from a healthy rotor, is the coupled collective/differential 

mode that does not include the blade with the damaged 

damper, and the mode with the lowest damping is the coupled 
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collective/differential mode that includes the blade with the 

damaged damper. 

HINGELESS ROTOR SUMMARY OF 

RESULTS 

A study similar to the one in the previous section was 

conducted after switching from the articulated rotor to a 

hingeless main rotor (with a non-dimensional rotating lag 

frequency of 0.65/rev at a 300 RPM rotational speed).  Figure 

16 shows the reduction in system damping with increasing 

levels of degradation in damper 1.  The results in Fig. 16 are 

based on a Floquet analysis of the coupled rotor-body system 

with rotor lag motions in multi-blade coordinates (Eq. 2), but 

very similar results are obtained when the Floquet analysis is 

conducted using individual blade coordinates to represent the 

blade lag motions (Eq. 1).  Figure 17 shows the minimum 

damping at resonance condition versus damper degradation 

level.  As with the articulated rotor in Fig. 10, the constant 

coefficient approximation (applied with rotor lag motions in 

multi-blade coordinates) predicts higher levels of damping 

than the Floquet analysis.  The reduction in damping using the 

constant coefficient approximation at 20%, 50%, and 100% 

degradation is 89%, 74%, and 55% of that from the Floquet 

analysis.  Observations made for the articulated rotor on the 

importance of the inclusion of the collective and differential 

lag modes in the ground resonance analysis apply equally to 

the hingeless rotor.  Similarly, the coupling of the collective 

and differential modes reported for the articulated rotor was 

observed for the hingeless rotor, as well. 

CONCLUSIONS 

This paper examines ground resonance behavior for a 

helicopter with a 4-bladed articulated and a soft in-plane 

hingeless rotor, when one of the lag dampers is degraded or 

has even failed entirely.  Three different analysis methods are 

used: (1) the lag motions/equations are represented using 

rotating-frame individual blade coordinates, and solved using 

Floquet theory, (2) the lag motions/equations are transformed 

to multi-blade coordinates, but still solved using Floquet 

theory since periodic terms are present when there is 

degradation in one of the dampers, and (3) with the lag 

motions/equations in multi-blade coordinates, the constant 

coefficient approximation is applied and an eigen-analysis is 

conducted to evaluate the system stability.  From the results 

presented the following observations could be made: 

1. Regardless of whether the blade lag motions are 

represented in individual blade coordinates or multi-

blade coordinates, the predicted stability levels are 

identical if the analysis is conducted using Floquet 

theory. 

2. If the lag motions and equations are in multi-blade 

coordinates, collective and differential lag needs to be 

retained (unlike the case of a classical ground resonance 

analysis where only the cyclic lag modes and body 

motions are required). 

3. If the lag motions and equations are in multi-blade 

coordinates, applying the coefficient approximation is 

equivalent to smearing the total loss in damping in a 

single damper equally over all the dampers. The 

predicted loss in system damping is smaller than that 

from a Floquet analysis, and the differences are greater 

for larger levels of damper degradation.  For the 

articulated rotor, at 20% degradation, the predicted loss 

in damping using the constant coefficient approximation 

was 85% of that with Floquet theory, but at 50% and 

100% damper degradation the predicted loss in damping 

with the constant coefficient approximation is 66% and 

46% of that with Floquet theory.  For the hingeless rotor, 

reduction in damping using the constant coefficient 

approximation at 20%, 50%, and 100% degradation is 

89%, 74%, and 55% of that from Floquet theory.   

4. Considering only the rotor (no fuselage) in multi-blade 

coordinates, when Floquet theory is used the decay rate 

of a single mode drops proportionate to the degradation 

in the single damper, while the other modes are 

unaffected.  In comparison, if the constant coefficient 

approximation is used, only one of the modes is 

unaffected (specifically one of the coupled 

collective/differential modes), the progressing and 

regressing modes show some reduction in damping, and 

the second coupled collective/differential mode shows 

twice the reduction in damping. 

Future studies will extend to 3- and 5-bladed rotors.  In 

particular, we anticipate that for 5-bladed rotors, in addition 

to the collective lag mode the 2c and 2s modes will need to be 

retained as well. 
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Fig. 5:  Articulated rotor-only modal frequencies 

(individual blade coordinates) 
 

 
Fig. 6:  Articulated rotor-only modal damping from 

Floquet theory (individual blade coordinates)  

for healthy and degraded damper 
 

 
Fig. 7:  Articulated rotor-body modal damping from 

Floquet theory (lowest damped mode, individual blade 

coordinates) with increasing damper degradation 

 
Fig. 8:  Articulated rotor-body modal damping from 

Floquet theory (lowest damped mode, multi-blade 

coordinates) with increasing damper degradation 
 

 
Fig. 9:  Articulated rotor-body modal damping from 

eigen-analysis (lowest damped mode, multi-blade 

coordinates) with increasing damper degradation 
 

 
Fig. 10:  Articulated rotor ground resonance stability 

comparisons for increasing levels of degradation 
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Fig. 11:  Articulated rotor ground resonance stability 

comparisons, with and without coll./diff. lag modes 
 

 
Fig. 12:  Articulated rotor-only modal frequencies 

(multi-blade coordinates) 
 

 
Fig. 13:  Articulated rotor-only modal damping (multi- 

blade coordinates).  Results from constant coefficient 

approximation and eigen-analysis (50% degradation) 

 
Fig. 14:  Articulated rotor-only modal damping (multi- 

blade coordinates).  Results from constant coefficient 

approximation and eigen-analysis (100% degradation) 
 

 
Fig. 15:  Rotor-only coupled coll./diff. lag modes 

 

 
Fig. 16:  Hingeless rotor-body modal damping from 

Floquet theory (lowest damped mode, multi-blade 

coordinates) with increasing damper degradation 
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     Fig. 17:  Hingeless rotor ground resonance stability

      comparisons for increasing levels of degradation 

 

 

Table 1:  System  Rotor-Body Parameters

Quantity Description Value 

𝑺𝜻
∗ =

𝑆𝜁𝑅

𝐼𝜁
 

𝑺𝜻: First blade lag mom. of inertia 

𝑰𝜻: Second blade lag mom. of inertia 

𝑹: Rotor Radius 

3

2
 

𝑴𝒙
∗ =

(𝑀𝑥 + 𝑁𝑀𝑏)𝑅
2

𝑁𝐼𝜁
 

(𝑴𝒙 + 𝑵𝑴𝒃): Support and blade mass in 

x-direction 

(𝑴𝒚 + 𝑵𝑴𝒃): Support and blade mass in 

y-direction 

68.175 

𝑴𝒚
∗ =

(𝑀𝑦 + 𝑁𝑀𝑏)𝑅
2

𝑁𝐼𝜁
 29.708 

𝝎𝒙 =
𝑘𝑥

𝑀𝑥 + 𝑁𝑀𝑏

 
Support Frequency in x-direction 

𝑘𝑥: Support stiffness in x-direction 
12.148 rad/sec 

𝝎𝒚 =
𝑘𝑦

𝑀𝑥 + 𝑁𝑀𝑏

 
Support Frequency in y-direction 

𝑘𝑦: Support stiffness in y-direction 
18.402 rad/sec 

𝝂𝜻 Non-dimensional rotating lag natural freq. 0.285/rev (articulated) 

0.65/rev at 5Hz* (hingeless) 

*𝜈𝜁 = 0.65 (
5

Ω
)  (Ω in Hz)

 

Table 2: System Damping Parameters 

 

 

Quantity Description Value 

𝜻𝒙 Modal Damping Ratio for 

support motion in x-direction 0.30 (articulated) 

0.15 (hingeless) 𝜻𝒚 Modal Damping Ratio for 

support motion in y-direction 

𝑪𝜻/𝑰𝜻 Ratio of rotor lag damping 

coeff. to blade lag inertia 

3.0 (articulated) 

1.5 (hingeless) 

 


