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ABSTRACT
In this work, the experimental assessment of the damage diagnosis performance of a full-scale rotorcraft blade is
performed via stochastic time-varying time series models in the context of active sensing acousto-ultrasound guided
wave-based damage detection and identification scheme. Ultrasonic guided waves, that are dispersive in nature, are
represented via functional series time-varying autoregressive (FS-TAR) models. Next, the estimated time-varying
model parameters are employed within a statistical decision-making framework to tackle damage detection and iden-
tification under predetermined type I error probability levels. Damage detection and identification based on coef-
ficients of projection (COP) as well as time-varying model parameters are shown. Both damage intersecting and
non-intersecting paths are considered in a full-scale rotorcraft blade as well as in an aluminum plate in pitch-catch
configuration for the complete experimental assessment. The detailed damage diagnosis results are presented and the
method’s robustness, effectiveness, and limitations are discussed.

INTRODUCTION

In order to increase the reliability, safety, sustainability,
and performance of aircraft/rotorcraft systems while reduc-
ing their maintenance cost, it is pervasive to integrate Struc-
tural Health Monitoring (SHM) technologies which may ef-
fectively enable their efficient life-cycle monitoring, and man-
agement (Refs. 1,2). SHM systems utilize distributed, perma-
nently installed sensors at certain structural regions and apply
diagnostic algorithms to extract meaningful health informa-
tion from the sensing data.

SHM methods, depending on the area covered, may be
broadly classified as local (part of the structure is covered) or
global (entire structure is monitored) methods. On the other
hand, based on the type of excitation used, they are classified
as active (external excitation is used) or passive (no external
excitation is used) methods. Ultrasonic guided wave-based
SHM, which can be classified as active sensing local meth-
ods, uses guided elastic waves for monitoring the structure.
Guided waves or Lamb waves are stress waves that propagate
through thin structures. They can travel long distances in the
non-dissipative medium such as metals and can be used to
monitor a large part of the structure for tiny damage, cracks,
or surface defects such as corrosion. In addition, these waves
can easily be generated or detected with the help of piezoelec-
tric transducers. Figure 1 and Figure 2 show the mechanism of
guided wave generation and detection within a thin structure.

Damage index-based damage diagnosis algorithms are widely
used in the literature in the context of guided wave-based dam-
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Fig. 1. Schematic diagram of the working principle of the
acousto-ultrasound based SHM.

Fig. 2. Detailed side view of the substrate, adhesive and
piezo sensors. Two modes of Lamb wave propagation, the
symmetric (S0) and antisymmetric (A0), can be observed.

age diagnosis for their simplicity and ease of use. In this ap-
proach, features of the signal such as time of flight (ToF), am-
plitude or signal energy from an unknown structural state are
compared to that of the healthy structure. In addition to time
domain DIs, frequency domain or mixed time-frequency do-
main DIs were formulated to increase the sensitivity of the
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damage detection process with the cost of reducing the ro-
bustness of the process (Refs. 3,4). Moreover, these DI-based
approach are deterministic and do not account for the stochas-
ticity inherent in the guided wave propagation signal (Ref. 5).
Recently, steps have been taken towards formulating proba-
bilistic DIs using Gaussian mixture models, Gaussian process
regression or other statistical tools (Refs. 6–8). In the case of
Gaussian mixture model, instead of comparing the individual
DIs, their probability distributions are compared with the help
of Kullback-Liebler (KL) divergence, or their modifications.
However, these methods do not model the actual wave prop-
agation for damage detection nor account for the underlying
wave propagation dynamics.

In the context of vibration-based SHM methods, the use
of stochastic time series models has shown great promise
(Refs. 9, 10). Such models employ random excitation or re-
sponse signals, statistical model building, and estimation tech-
niques to represent the structural response. Moreover, statis-
tical time series models possess unique advantages, such as
no need for physics-based Finite Element (FE) or numerical
models, no need for complete structural models, and inherent
accounting of uncertainty as they are statistical in nature.

In this work, stochastic time-varying or adaptive time se-
ries models are introduced in the context of ultrasonic-guided
wave-based SHM for active-sensing damage detection and
identification. Unlike traditional vibration-based methods,
guided-wave signals possess certain unique challenges, such
as inherent non-stationary (time-varying) behavior and dis-
persion, limited signal length, complex effects due to reflec-
tions from boundary conditions, and high sensitivity to both
environmental (temperature) and operating (loading) condi-
tions (Refs. 11, 12). The main objective of this paper is the
complete experimental assessment and evaluation of the pro-
posed SHM scheme based on Functional Series Time-varying
AutoRegressive (FS-TAR) (Refs. 13, 14) models on a full-
scale rotorcraft blade for different damage sizes and locations.
Damage has been simulated on different locations of the blade
via the use of small added weights that introduces local elas-
ticity changes in the blade. The rotorcraft blade used in this
experiment is from an Airbus A350/H125 helicopter. It has a
span of 4.7 m and a chord of 0.3 m. The weight of the blade is
31.15 kg. Before presenting the damage detection and identi-
fication results on this full-scale rotorcraft blade, damage di-
agnosis in an aluminum plate is discussed first as an initial
experimental demonstration and assessment.

GUIDED WAVE SIGNAL REPRESENTATION

Guided waves are inherently non-stationary due to their time-
dependent (evolutionary) characteristics. The time-varying
nature of guided waves require the use of corresponding time-
varying non-parametric and/or parametric models (Refs. 13,
15, 16). Stochastic parametric non-stationary (time-varying)
models such as functional series time-dependent autoregres-
sive moving average (FS-TARMA) models or related types
and their extensions have been mainly used in the context of
random vibration analysis (Refs. 13, 15, 16), with a detailed

review presented in (Ref. 13). In this study, the time-varying
characteristics of the guided wave signals have been mod-
eled via deterministic parameter evolution models, where the
model parameters are deterministic functions of time. Func-
tional series time-varying autoregressive (FS-TAR) models
fall within this category.

Deterministic Parameter Evolution Models

Deterministic parameter evolution TAR representation im-
poses deterministic structure upon the time evolution of their
parameters. This is achieved by postulating model parame-
ters as deterministic functions of time, belonging to specific
functional subspaces. Such representations are referred to as
FS-TAR models. Their AR parameters, as well as innovations
standard deviations, are all expanded within properly selected
functional subspaces defined as

FAR ≜ {Gba(1)[t],Gba(2)[t] . . .Gba(pa)[t]} (1)

Fσe ≜ {Gbs(1)[t],Gbs(2)[t] . . .Gbs(ps)[t]} (2)

In these expressions, the “F ” designates the functional sub-
space of the indicating quantity and G j[t] a set of orthogo-
nal basis functions selected from a suitable family (such as
Chebyshev, Legendre, other polynomials, trigonometric or
other functions). The AR and variance subspace dimensional-
ities are indicated as pa and ps, respectively, while, the indices
ba(i)(i = 1, . . . pa) and bs(i)(i = 1, . . . ps) designate the spe-
cific basis functions of a particular family that are included in
each subspace. The time-dependent AR and innovations stan-
dard deviation of an FS-TAR(na)[pa,ps] representation may
thus be expressed as

y[t]+
na

∑
i=1

ai[t] · y[t − i] = e[t], e[t]∼ iidN (0,σ2
e [t]) (3)

ai[t]≜
pa

∑
j=1

ai, j ·Gba( j)[t] σe[t]≜
ps

∑
j=1

s j ·Gbs( j)[t] (4)

with ai, j and s j designating the AR and innovations standard
deviation coefficients of projection. An FS-TAR model is thus
parametrized in terms of its coefficients of projection ai, j and
s j.

Coefficients of Projection Estimation

The problem of parameter estimation for deterministic param-
eter evolution TAR models, that is, FS-TAR models consists
of determining the AR and innovations variance projection co-
efficient vectors ϑ and s, respectively.

ϑ ≜ [a1,1, · · ·a1,pa
... · · ·

...ana,1, · · ·ana×pa]
T
(na·pa)×1 (5)

s ≜ [s1,s2, · · ·sps]
T
ps×1 (6)

where ϑ represents the AR projection coefficient vectors.
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with this notation the TAR model may compactly be written
as:

A[B, t,ϑ ] · y[t] = e[t,ϑ ] E{e2[t,ϑ ]}= σ
2
e [t,ϑ ] (7)

And the expanded form would be

y[t]+
na

∑
i=1

pa

∑
j=1

ai, j ·Gba( j)[t] · y[t − i] = e[t,ϑ ] (8)

By comparing Equation (7) and Equation (8), one can observe
that

A[B, t,ϑ ] = 1+
na

∑
i=1

pa

∑
j=1

ai, j ·Gba( j)[t] ·Bi (9)

Equation (8) may also be written as:

y[t] = φ
T
A [t] ·ϑ + e[t,ϑ ] (10)

with

φ T
A [t]≜ [−Gba(1)[t] · y[t −1], · · ·ba(pa)[t] · y[t −na]]T(na·pa)×1

(11)

Estimation of the coefficients of projection vector ϑ may be
based upon a prediction error criterion (PE) consisting of the
sum of squares of the model’s one-step-ahead prediction er-
rors (residual sum of squares)

ϑ̂ = argmin
ϑ

N

∑
t=1

e2[t,ϑ ] (12)

with arg min designating minimizing the argument.

Since the residual e[t,ϑ ] depends linearly upon the parameter
vector ϑ , minimization of the PE criterion of Equation (12)
leads to the ordinary least squares (OLS) estimator.

ϑ̂
OLS

= (
1
N
·

N

∑
t=1

φ A[t] ·φ T
A [t])

−1 · ( 1
N
·

N

∑
t=1

φ A[t] · y[t]) (13)

The maximum likelihood (ML) estimation of the coefficients
of projection vector ϑ may be obtained through the maxi-
mization of the log-likelihood function, which for the FS-TAR
model and under the Gaussian assumption for the innovations
sequence may be given as

lnL (ϑ ,σ e|yN) =−N
2

ln2π − 1
2

N

∑
t=1

(
lnσ

2
e [t]+

e2[t,ϑ ]

σ2
e [t]

)
(14)

with σ e = [σ2
e [1], · · ·σ2

e [N]]T constituting a nuisance parame-
ter vector of high dimensionality while ϑ is a parameter vector

of low dimensionality. In such cases, the nuisance parameter
vector may be profiled out from the log-likelihood function by
considering the conditional maximum likelihood (CML) esti-
mate of σ̂e for known ϑ and substituting it into Equation (14).
Towards this end,

∂ lnL

∂σ2
e [t]

= 0 =⇒ −1
2
·
[

1
σ2

e [t]
− e2[t,ϑ ]

σ4
e [t]

]
=⇒ σ̂

2
e [t] = e2[t,ϑ ]

Then it follows that

ϑ̂
ML

= argmax
ϑ

{lnL (ϑ , σ̂ e|yN)}= argmax
ϑ

[
−1

2

N

∑
t=1

lne2[t,ϑ ]

]

ϑ̂ is actually a pseudo-likelihood estimator which actually
leads to the same point estimate with the original ML estima-
tor of ϑ and σ e. Once the FS-TAR coefficients of projection
vector ϑ is estimated (which are constants), the time-varying
parameter vector θ [t] = [a1[t],a2[t] · · ·ana[t]]na×1 can be esti-
mated by multiplying with the basis functions as shown in
Equation (4).

The associated covariance matrix for the estimated coefficient
of projection vector ϑ can be obtained as (Ref. 14):

Pϑ =
1
N
·

{
1
N

N

∑
t=1

φ A[t] ·φ T
A [t]

(gT
s [t] · ŝ

ML)2

}−1

·{
1
N

N

∑
t=1

σ2
e [t] ·φ A[t] ·φ T

A [t]

(gT
s [t] · ŝ

ML)4

}
·

{
1
N

N

∑
t=1

φ A[t] ·φ T
A [t]

(gT
s [t] · ŝ

ML)2

}−1

(15)

Notice that the covariance matrix Pϑ for the coefficients of
projection vector ϑ is not time-varying. In order to per-
form time-varying damage detection and identification, time-
varying parameters and the associated time-varying covari-
ance matrix P[t] would be necessary. The time-varying pa-
rameter vector θ [t] = [a1[t] a2[t] . . .ana[t]] can be obtained
via Equation (4). The associated time-varying covariance ma-
trix can be obtained by following three steps: (i) sample m-
times from a multivariate Gaussian distribution with mean
ϑ and covariance Pϑ (N (ϑ ,Pϑ )); (ii) obtain the associated
time-varying parameters θ [t] from Equation (4) to obtain m-
realizations of the parameters; (iii) estimate the sample mean
θ [t] and covariance P[t].

The estimation of the innovations standard deviation coeffi-
cients of projection may be achieved by the following proce-
dure. An initial estimate of the estimated residual series e[t, ϑ̂ ]
variance is first obtained via a non-causal moving average fil-
ter (using a sliding time window) as follows:

σ̂
2
e [t] =

1
2M+1

t+M

∑
τ=t−M

e[τ, ϑ̂ ] (16)
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with 2M + 1 designating the window length. An initial es-
timate of the coefficients of projection vector s may then be
obtained by fitting the obtained standard deviation σ̂e[t] to a
selected functional subspace Fσe . This leads to the overdeter-
mined set of equations

σ̂e[t] =
ps

∑
j=1

s j ·Gbs( j)[t] = gT [t] · s (17)

where

g[t]≜ [Gbs(1)[t],Gbs(2)[t], · · ·Gbs(ps)[t]]
T
ps×1 (18)

This may be solved for the coefficients of projection s j in a
linear least squares sense.

The obtained initial estimate may subsequently be refined via
maximum likelihood (ML) estimation. Accordingly, the re-
fined estimator maximizes the loglikelihood of the residual
standard deviation projection vector s given the residual series
e[t, ϑ̂ ] (now treated as available measurements) with respect
to the residual standard deviation projection vector s.

ŝML = argmin
s

{
− 1

2

N

∑
t=1

(ln(gT [t] · s)2)+
e2[t, ϑ̂ ]

(gT [t] · s)2

}
(19)

which is subject to the constraint gT [t] · s > 0. Estimation of s
based upon this procedure constitutes a non-linear optimiza-
tion problem, and is tackled via iterative optimization tech-
niques that employ the previously obtained initial estimate
as the starting point. An improved FS-TAR estimation may
be achieved via the ML method, which maximizes the log-
likelihood of the unknown vectors ϑ ,s given the signal mea-
surement yN .

FS-TAR Model Structure Selection

Model structure selection of the FS-TAR model refers to the
selection of the AR model order na, AR and innovations
standard deviation functional subspaces FAR, Fσe , respec-
tively, their respective dimensionalities pa and ps, and their
respective functional basis indices. Model structure selection
could be based on either trial and error or integer optimization
schemes, according to which models corresponding to various
candidate structures are estimated, and the one providing the
best fitness to the non-stationary signal is selected.

The fitness function may be the Gaussian log-likelihood func-
tion of each candidate model. The particular model that max-
imizes it is the most likely to be the actual underlying model
responsible for the generation of the measured signal, in the
sense that it maximizes the probability of having provided the
measured signal values, and is thus selected. A problem with
this approach is that the log–likelihood may be monotonically
increasing with increasing model orders, and as a result, the
overfitting of the measured signal occurs. For this reason, cri-
teria such as the AIC (Akaike information criterion (Ref. 17))

or the BIC (Bayesian information criterion (Ref. 18)) are gen-
erally used and can be represented as follows:

AIC =−2 · lnL (M (ϑ N ,(σ2
e )

N)|xN ,yN)+2 ·d (20)

BIC =− lnL (M (ϑ N ,(σ2
e )

N)|xN ,yN)+
lnN

2
·d (21)

with L designating the model likelihood, N the number of
signal samples, and d the number of independently estimated
model parameters. As it may be observed, both criteria con-
sist of a superposition of the negative log-likelihood function
and a term that penalizes the model order or structural com-
plexity and thus discourages model overfitting. Accordingly,
the model that minimizes the AIC or the BIC is selected.
The Gaussian log-likelihood function of the model structure,
M (ϑ N ,(σ2

e )
N)|xN ,yN), given the signal sample yN and actu-

ation xN is given by:

lnL (M (ϑ N ,(σ2
e )

N)|xN ,yN) = ln f (M (xN ,yN |ϑ N ,(σ2
e )

N))
(22)

= ln
N

∏
t=1

f (e[t]|ϑ N ,(σ2
e )

N))

=
N

∑
t=1

ln
(
(2πσ

2
e [t])

− 1
2 · exp{−(

e2[t]
2σ2

e [t]
)}
)

lnL (M (ϑ N ,(σ2
e )

N)|xN ,yN) =

−N
2
· ln2π − 1

2

N

∑
t=1

(
lnσ

2
e [t]+

e2[t]
σ2

e [t]

)
As a result, the BIC equation can be written as:

BIC =−N
2
· ln2π − 1

2

N

∑
t=1

(
lnσ

2
e [t]+

e2[t]
σ2

e [t]

)
+

lnN
2

·d (23)

The innovations (one-step-ahead prediction error) variance
σ2

e [t] may be estimated via Equation (16).

The ratio of the residual sum square versus the signal sum
square (RSS/SSS) may also be used as another fitness criteria
for the selection of the best model.

There are basically two search schemes for locating the best
fitness model for FS-TAR case. One is known as an integer
optimization scheme and another is known as a suboptimal
search scheme. Irrespective of the particular scheme used, the
basis function family (such as a given polynomial family, or a
trigonometric family and so on) is assumed to be preselected.
This preselection may be based on several factors such as prior
knowledge or physical understanding of the system being in-
vestigated. It should be remembered that the selection of the
basis functions family is more related to the parsimony of the
representation rather than the accuracy. In fact, any family of
basis functions may approximate any given curve with arbi-
trary accuracy, as long as a sufficient number of basis func-
tions is used.
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An integer optimization scheme consists of two distinct
phases.

Phase I: Coarse Optimization: Phase I aims at determining
promising subregions of the complete search space within
which optimal model structures might be located. This is
achieved via a genetic algorithm which maximizes the neg-
ative AIC or BIC. The algorithm incorporates: i) a non-linear
ranking operator; ii) a stochastic universal sampling operator;
iii) a two point cross-over operator; iv) a mutation operator;
and v) a fitness based reinsertion operator.

Phase II: Fine Optimization: Phase II aims at refining the re-
sults of Phase I, and selecting the globally optimum structure.
It operates in a neighborhood of each initial solution, and is
based upon the concept of backward regression. It starts with
the maximum values of the argument, and subsequently re-
duces either the model orders na or one of the subspace di-
mensionalities (pa, ps) until no further reduction in AIC or
BIC is achieved. The procedure is repeated for all initial so-
lutions, and the model structure corresponding to the globally
optimum AIC or BIC is selected.

Although this scheme offers the possibility of more exhaustive
searches, and is fully automated, it is exclusively based upon
the fitness function (usually the AIC/BIC criteria), and may
lead to overparameterizations which may affect the damage
diagnosis accuracy.

The key characteristic of the suboptimal search scheme is the
approximate decomposition of the structure selection problem
into two subproblems: i) the model order na selection sub-
problem, and ii) the functional subspaces (pa, ps,ba( j),bs( j))
selection subproblem. In order to isolate the selection of the
model orders from that of the functional subspaces, their in-
teraction has to be minimized. This may be achieved by fixing
one and optimizing for the others. To achieve optimum model
order na, an extended (high dimensionality) and complete (all
the consecutive functions up to the subspace dimensionality)
functional subspaces are initially adopted and kept fixed for
all model order na. With these fixed functional subspaces, the
model order with the lowest AIC or BIC is selected.

In the second phase of the suboptimal search scheme, the se-
lected model order na from the previous step is kept fixed,
and the redundant functional subspaces are sequentially re-
moved without significantly reducing model accuracy. This
scheme is referred to as the suboptimal scheme as it may not
provide the globally optimal model structure. However, from
a practical stand point, this may be an effective approach due
to its simpler implementation, low computational complexity,
and flexibility in accounting for user provided structural in-
formation. Its main limitation is the use of an extended and
complete functional subspaces which results in highly over-
parameterized structure, and the estimation of the associated
high number of coefficients of projection may pose statisti-
cal difficulties, that is, the number of available signal samples
may be inadequate for this purpose.

Model Validation

Once a model has been obtained, it must be validated. Al-
though this may be based on various criteria (depending on the
model’s intended use), formal validation procedures are typi-
cally based upon the posterior examination of the underlying
assumptions, such as the model’s residual series uncorrelated-
ness (whiteness) and Gaussianity. Due to the residual’s time-
dependent variance, the usual residual whiteness tests may not
be applicable for non-stationary case. Yet, a relatively simple
test, known as the residual sign test or runs test may be applied
based on the number of sign changes in the series.

FS-TAR-BASED DAMAGE DIAGNOSIS

Coefficients of Projection Based Damage Diagnosis

Let ϑ̂ designate a proper estimator of the parameter vector ϑ .
For a sufficiently long signal, the estimator is (under mild as-
sumptions) Gaussian distributed with mean equal to its true
value ϑ and a certain covariance Pϑ , hence ϑ̂ ∼ N (ϑ ,Pϑ ).
Damage detection is based on testing for statistically signifi-
cant changes in the parameter vector Pϑ between the nominal
state and current state of the structure through the hypothesis
testing problem.

H0 : δϑ = ϑ o −ϑ u = 0
null hypothesis–healthy structure
H1 : δϑ = ϑ o −ϑ u ̸= 0
alternative hypothesis – damaged structure

The difference between the two parameter vector estimators
also follows Gaussian distribution, that is, δ ϑ̂ = ϑ̂ o − ϑ̂ u ∼
N (δϑ ,δP), with δϑ = ϑ o −ϑ u and δP = Po +Pu, where
Po,Pu designate the corresponding covariance matrices. Un-
der the null (H0) hypothesis δ ϑ̂ = ϑ̂ o − ϑ̂ u ∼ N (0,2Po) and
the quantity

Q = δ ϑ̂
T
·δP−1 ·δ ϑ̂ with δP = 2Po (24)

follows a χ2 distribution with d = dim(θ) (parameter vector
dimensionality) degrees of freedom. As the covariance ma-
trix Po corresponding to the healthy structure is unavailable,
its estimated version P̂o is used. Then the following test is
constructed at the α(type I) risk level:

Q ⩽ χ
2
1−α(d) =⇒

H0 is accepted (healthy structure)
Else =⇒
H1 is accepted (damaged structure)

where, χ2
1−α

(d) designates the χ2 distribution’s (1−α) crit-
ical points. As the covariance matrix Po corresponding to the
healthy structure is unavailable, its estimated version P̂o is
used. It is to be noted here that, when P̂o is estimated from
the data, the quantity Q in Equation 24 follows a Hotelling’s
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T 2 distribution, which in turn, can be related to the Fisher’s
F distribution. When N → ∞, the F distribution converges
to χ2 distribution. Damage identification may be based on a
multiple hypothesis testing problem comparing the parame-
ter vector ϑ̂ u belonging to the current state of the structure to
those corresponding to different damage types ϑ̂ A, ϑ̂ B, · · ·.

Time-Varying Damage Diagnosis

In this method, damage diagnosis of a structure is based on a
time-dependent characteristic quantity Q[t] = f (θ [t]), which
is a function of the time-varying parameter vector θ [t] of the
FS-TAR model. Let θ̂ [t] designate a proper estimator of the
time-varying parameter vector θ [t]. For a sufficiently long
signal, the estimator is (under mild assumptions) Gaussian
distributed with mean equal to its true value θ [t] and a certain
covariance P[t], hence θ̂ [t]∼ N (θ [t],P[t]). Damage diagno-
sis is then based on testing for statistically significant changes
in the time-varying parameter vector θ [t] for each time instant
between the nominal and current state of the structure through
the hypothesis testing problem.

H0[t] : δθ [t] = θ o[t]−θ u[t] = 0
null hypothesis–healthy structure
H1[t] : δθ [t] = θ o[t]−θ u[t] ̸= 0
alternative hypothesis – damaged structure

The difference between the two parameter vector estima-
tors also follows Gaussian distribution, that is, δ θ̂ [t] =
θ̂ o[t]− θ̂ u[t] ∼ N (δ θ̂ [t],δP[t]), with δθ [t] = θ o[t]− θ u[t]
and δP[t] = Po[t]+Pu[t], where Po[t],Pu[t] designate the cor-
responding time-varying covariance matrices. Under the null
(H0[t]) hypothesis δ θ̂ [t] = θ̂ o[t]− θ̂ u[t] ∼ N (0,2Po[t]) and
the quantity

Q[t] = δ θ̂ [t]T ·δP[t]−1 ·δ θ̂ [t], δP[t] = 2Po[t] (25)

follows a χ2 distribution with d = dim(θ [t])(parameter vec-
tor dimensionality) degrees of freedom. As the time-varying
covariance matrix Po[t] corresponding to the healthy structure
is unavailable, its estimated version P̂o[t] is used. Then the
following test is constructed at the α(type I) risk level:

Q[t]⩽ χ
2
1−α(d) =⇒

H0[t] is accepted (healthy structure)
Else =⇒
H1[t] is accepted (damaged structure)

where, χ2
1−α

(d) designates the χ2 distribution’s (1−α) criti-
cal points. Damage identification may be based on a multiple
hypothesis testing problem comparing the parameter vector
θ̂ u[t] belonging to the current state of the structure to those
corresponding to different damage types θ̂ A[t], θ̂ B[t], · · ·.

(a) (b)

(c)

Fig. 3. (a) The aluminum plate used in this study; (b) a
schematic of the plate’s sensor layout and dimensions; (c)
realization of the guided wave signal for healthy and dam-
aged cases with a representative non-parametric spectro-
gram analysis.

TEST CASE I: ALUMINUM PLATE WITH
SIMULATED DAMAGE

Experimental Setup and Data Acquisition for the Alu-
minum Plate

In this study, a 152.4×279.4 mm (6×11 in) 6061 aluminum
coupon (2.36 mm/0.093 in thick) was used (Figure 3(a)). Us-
ing Hysol EA 9394 adhesive, six lead zirconate titanate (PZT)
piezoelectric sensors (type PZT-5A, Acellent Technologies,
Inc) of 6.35 mm (1/4 in) diameter and a thickness of 0.2 mm
(0.0079 in) were attached to the plate and cured for 24 hours
in room temperature. Figure 3(b) shows the dimensions of the
plate, placement of the PZT transducers, and the path naming
convention. Up to four three-gram weights were taped to the
surface of the plate starting from its center-point to simulate
local damage (Figure 3(b)).

Actuation signals in the form of 5-peak tone bursts (5-cycle
Hamming-filtered sine wave, 90 V peak-to-peak, 250 kHz
center frequency) were generated in a pitch-catch configura-
tion over each sensor consecutively. Data were collected us-
ing a ScanGenie III data acquisition system (Acellent Tech-
nologies, Inc) from selected sensors during each actuation
cycle at a sampling frequency of 24 MHz. Twenty signals
from each sensor (wave propagation path) and damage state
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were recorded. This led to a total of 100 data sets for each
sensor. For the time-series modeling, the acquired signals
were down-sampled to 2 MHz. This process resulted in 612-
sample-long signals. Figure 3(c) presents indicative signal re-
alization for different damage (health) state (top subplot) and
non-parametric spectrogram of a single signal realization1.

Parametric Identification and Damage Detection Results
for the Aluminum Plate

In the context of the active sensing guided wave-based
method, there are often multiple sensors installed at the area
being monitored, and every actuator sensor path in the net-
work has to be examined in order to assess the integrity of
the component. In the present study, Figure 3(b) shows the
actuator-sensor layout, and six sensors/actuators have been
used. Damage starts from the center of the plate and grows in
magnitude to the right. In this study, simulated damages have
been used in the form of weights mounted to the plate with
tacky tapes. It has been shown that when the guided wave
signal crosses the damage (known as the damage-intersecting
path), a significant change can be observed in the signal with
the increase in the damage size. On the other hand, for a
damage non-intersecting path, one can observe that the re-
ceived signals sustain significantly smaller change with the
increase in damage size. Thus, information from the damage
non-intersecting path naturally carries less information when
it comes to damage detection and identification compared to
damage-intersecting paths. In this case, path 3-4 has been
chosen as representative damage intersecting path and path 2-
4 as damage non-intersecting path.

Model selection of FS-TAR involves selecting the appropriate
AR order na and the functional subspaces FAR and Fσe . In
the present case, the best FS-TAR model minimizes the BIC
criteria utilizing an integer optimization scheme as described
in (Refs. 13, 14). The integer optimization scheme utilizes
coarse optimization based upon a genetic algorithm (popula-
tion size 100, number of generations 100, crossover probabil-
ity 0.8 and mutation probability 0.05) and fine optimization
based upon the concept of backward regression. The func-
tional subspaces considered are wavelet basis functions. For
path 3-4, the best model occurred for na= 4 and the functional
subspaces are FAR = {G1[t],G2[t],G3[t],G4[t]} (pa = 4) and
Fσe = {G1[t],G2[t]}(ps = 2). This is compactly written as
FS-TAR(4)[4,2]. Similarly, for path 2-4, the best model oc-
curred for na = 4 and FAR = {G1[t],G2[t],G3[t],G4[t],G5[t]}
(pa = 5) and Fσe = {G1[t],G2[t],G3[t]}(ps = 3) compactly
written as FS-TAR(4)[5,3]. Maximum-likelihood estimator
was used for estimating the coefficients of projection vector
ϑ .

Figure 4 depict the first four AR coefficients of projection
(COP) using the wavelet basis function for damage non-
intersecting path 2-4 for all different structural states, namely:
healthy, damage level 1, damage level 2, damage level 3,

1window length: 30 samples; 98% overlap; NFFT points: 30000 (zero-
padding took place to obtain smooth magnitude estimates); frequency resolu-
tion ∆ f = 666.66 Hz.

Fig. 4. Coefficients of projection (COP) for different struc-
tural states for the aluminum plate coupon for damage
non-intersecting path 2-4 using the wavelet basis function:
the COP mean is shown as solid lines and the associated
±2 standard deviations as shaded regions.

(a)

(b)

Fig. 5. Correlation between the coefficients of projection
for different paths of the aluminum plate coupon: (a)
for damage intersecting path 3-4; (b) for damage non-
intersecting path 2-4.

and damage level 4. For wavelet basis functions and dam-
age non-intersecting path 2-4, there are 20 AR COP in to-
tal (na · pa = 4 · 5 = 20). Among these 20 (16 for dam-
age intersecting path 3-4) AR COPs, the first four, namely:
α1,1,α1,2,α1,3,α1,4 are shown. For each state, 20 realizations
are shown. The solid lines represent the mean COP values,
and the shaded regions represent the ±2 experimental stan-
dard deviation confidence intervals. In Figure 4 (for dam-
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(a)

(b)

Fig. 6. Damage detection performance of the FS-
TAR(4)[4,2] model for the aluminum plate for damage in-
tersecting path 3-4: (a) using the experimental covariance
matrix derived from 20 healthy realizations; and (b) using
the FS-TAR(4)[4,2] model-based covariance matrix.

age non-intersecting path 2-4), for the COP α1,4, note that the
COPs of different structural states are well separated and the
confidence intervals are also narrower compared to the COP
α1,1,α1,2,α1,3.

Figure 5(a) and (b) shows the correlation between the COP
α1,1 and COP α1,4 for damage intersecting path 3-4 and dam-
age non-intersecting path 2-4, respectively, using the wavelet
basis function. Note that the COPs of different structural
states are clustered together and well separated from each
other both for damage intersecting path 3-4 and damage non-
intersecting path 2-4. In general, when the COPs are clustered
together, it is easier to perform damage detection and identifi-
cation.

Figure 6 shows the damage detection performance of the dam-
age intersecting path 3-4 using the wavelet basis functions. In
Figure 6(a), the covariance matrix was derived from the 20 ex-
perimental healthy signals and in Figure 6(b), FS-TAR(4)[4,2]
model-based covariance matrix was used. Note that for both
cases, perfect damage detection was achieved. The α level
used in Figure 6(a) was 1×10−12. In Figure 6(b), it was man-
ually adjusted as α level gets close to 1. Similarly, Figure 7
shows the damage detection performance of the damage non-
intersecting path 2-4. Note that perfect damage detection was
achieved in this case too. The α level used in Figure 7(a) was
1×10−12 while it was manually adjusted in Figure 7(b).

Figure 8 shows the damage identification performance for the
damage non-intersecting path 2-4 for the wavelet basis func-
tion and using the experimental covariance matrix. Note that
perfect damage identification was achieved with no missed
classification. As for example, when identifying damage level

(a)

(b)

Fig. 7. Damage detection performance of the FS-
TAR(4)[5,3] model for the aluminum plate for damage non-
intersecting path 2-4: (a) using the experimental covari-
ance matrix derived from 20 healthy realizations; and (b)
using the FS-TAR(4)[5,3] model-based covariance matrix.

2 (Figure 8(b)), all the test statistics for damage level 2 remain
below the threshold (dotted red line) and the test statistics for
all other damage level go outside the threshold. Healthy test
statistics are also shown to reinforce the fact that simultane-
ous damage detection and identification are possible using the
same identified model structure.

Figure 9 shows the time-varying damage detection using
the wavelet basis function for damage intersecting path 3-
4. In Figure 9(a), experimental covariance matrix derived
from 20 experimental healthy signals and in Figure 9(b), FS-
TAR(4)[5,3] model-based covariance matrix were used. In this
case, instead of using the constant COPs, four time-varying
parameters (as the model order is na = 4) α1, α2, α3, and
α4 were used with the associated time-varying covariance.
Note that the 20 healthy realizations of the time-varying test-
statistics (solid blue lines) lie below the threshold (dotted red
line) for all time instants. And the time-varying test statistics
for damage level 1, 2, 3, and 4 (all realizations) crosses the
threshold. As a result, perfect damage detection was achieved
both for the experimental and theoretical covariance matrix
used. Similarly, Figure 10 shows the time-varying damage
detection using the wavelet basis function for damage non-
intersecting path 2-4. Note that perfect damage detection was
achieved in this case too. The α level used in Figure 9(a) and
Figure 10(a) was 1×10−8. On the other hand, it was manually
adjusted for Figure 9(b) and Figure 10(b).

Figure 11 shows the time-varying damage identification per-
formance for the aluminum plate for damage intersecting path
3-4. In this case, FS-TAR(4)[4,2] model-based covariance ma-
trix was used. Note that perfect damage identification was
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(a)

(b)

(c)

(d)

Fig. 8. Damage identification results of the FS-TAR(4)[5,3]
model for the aluminum plate for damage non-intersecting
path 2-4 using the experimental covariance matrix derived
from 20 healthy realizations: (a) damage level 1; (b) dam-
age level 2; (c) damage level 3; (d) damage level 4.

achieved for all different damage levels.

TEST CASE II: HELICOPTER BLADE
WITH SIMULATED DAMAGE

Experimental Setup and Data Acquisition for the Heli-
copter Blade

The second experimental setup consists of an Airbus H125
helicopter blade, which has a composite material construc-
tion. It has a span of 4.7 m and a chord of 0.3 m. The weight
of the blade is 31.15 kg. The blade has its main spar made
from winded roving glass fiber. A laminated woven glass fiber

(a)

(b)

Fig. 9. Time-varying damage detection performance of the
FS-TAR(4)[4,2] model for the aluminum plate for damage
intersecting path 3-4: (a) using the experimental covari-
ance matrix derived from 20 healthy realizations; and (b)
using the FS-TAR(4)[4,2] model-based covariance matrix.

(a)

(b)

Fig. 10. Time-varying damage detection performance of
the FS-TAR(4)[5,3] model for the aluminum plate for dam-
age non-intersecting path 2-4: (a) using the experimental
covariance matrix derived from 20 healthy realizations;
and (b) using the FS-TAR(4)[5,3] model-based covariance
matrix.

skin is wrapped over internal structure with moltoprene foam
filling. Figure 12(a) shows the entire rotorcraft blade while
Figure 12(b) shows the part of the blade where the PZT sen-
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(a)

(b)

(c)

(d)

Fig. 11. Time-varying damage identification results for the
aluminum plate for damage intersecting path 3-4 using the
FS-TAR(4)[4,2] model-based covariance matrix: (a) dam-
age level 1; (b) damage level 2; (c) damage level 3; (d)
damage level 4.

sors were mounted. Using Hysol EA 9394 adhesive, six lead
zirconate titanate (PZT) piezoelectric sensors (type PZT-5A,
Acellent Technologies, Inc) of 6.35 mm (1/4 in) diameter and
a thickness of 0.2 mm (0.0079 in) were attached to the plate
and cured for 24 hours in room temperature. The distance be-
tween the sensor pair (1,4), (2,5) and (3,6) is 6 inches. And the
distance between the sensor pair (1,2), (2,3), (4,5) and (5,6) is
3 inches. Sensors 1 and 4 are 2.8 inches apart from the left
edge. Similarly, sensors 3 and 6 are 2.8 inches apart from the
right edge. Up to five three-gram weights were taped to the
surface of the rotor blade starting from its center-point to sim-
ulate local damage as shown in Figure 12(b). Data acquisition

(a) (b)

(c)

Fig. 12. Experimental setup and signal of the full-scale ro-
torcraft blade: (a) full-scale rotorcraft blade with sensors;
(b) PZT sensors arrangement on the rotorcraft blade; (c)
indicative signal from the blade and the non-parametric
spectrogram for path 1-4.

and analysis were done in the same manner as in the case of
the aluminum coupon.

Figure 12(c) show a typical response signal from path 1-4
and its spectrogram. Note that unlike aluminum plate, the
response signal dies out quickly after 150 µs. This occurs due
to the moltoprene foam filling which absorbs the signal due
to its viscous nature. As a result, the length of the available
signal for damage detection and identification of the rotorcraft
blade is shorter compared to the aluminum plate.

Parametric Identification and Damage Detection Results
for the Helicopter Blade

Similar to the aluminum plate, for the case of the rotorcraft
blade, an integer optimization scheme was used for determin-
ing the basis indices. For path 3-4, the best model occurred for
na = 4 and the functional subspaces are FAR = {G1[t],G3[t]}
(pa = 2) and Fσe = {G1[t],G2[t]}(ps = 2). This is compactly
written as FS-TAR(4)[2,2]. Similarly, for path 2-4, the best
model occurred for na = 2 and FAR = {G1[t]} (pa = 1) and
Fσe = {G1[t]}(ps = 1) compactly written as FS-TAR(2)[1,1].
Note that for damage non-intersecting path 2-4 only one ba-
sis function is used. As the index ba = 1, so it is basically a
constant. This, in principle, reduces the FS-TAR model into
an AR model, where the parameters are essentially constant.
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Fig. 13. Coefficients of projection (COP) for different
structural states for the rotorcraft blade coupon for dam-
age intersecting path 3-4 using the wavelet basis function:
the COP mean is shown as solid lines and the associated
±2 standard deviations as shaded regions.

(a)

(b)

Fig. 14. Correlation between the coefficients of projection
for different paths of the rotorcraft blade: (a) for damage
intersecting path 3-4; and (b) for damage non-intersecting
path 2-4 .

However, the FS-TAR(2)[1,1] model is required for damage de-
tection and identification for the damage non-intersecting path
in the rotorcraft blade. Maximum-likelihood estimator was
used again for estimating the coefficients of projection vector
ϑ .

Figure 13 depict the first four AR coefficients of projection
(COP) using the wavelet basis function for damage inter-
secting path 3-4 for all different structural states, namely:
healthy, damage level 1, damage level 2, damage level 3,

(a)

(b)

Fig. 15. Damage detection performance of the FS-
TAR(4)[2,2] model for the rotorcraft blade for damage in-
tersecting path 3-4: (a) using the experimental covariance
matrix derived from 20 healthy realizations; and (b) using
the FS-TAR(4)[2,2] model-based covariance matrix.

damage level 4 and damage level 5. For wavelet basis func-
tions and damage intersecting path 3-4, there are 8 AR COP
in total (na · pa = 4 · 2 = 8). Among these 8 (2 for damage
non-intersecting path 2-4) AR COPs, the first four, namely:
α1,1,α1,2,α1,3,α1,4 are shown. For each state, 20 realizations
are shown. The solid lines represent the mean COP values,
and the shaded regions represent the ±2 experimental stan-
dard deviation confidence intervals. In Figure 13 (for damage
intersecting path 3-4), for the COP α1,2 and α1,4, note that
different damage states are overlapped on each other and the
corresponding confidence intervals are relatively wider. On
the other hand, for the COP α1,1 and α1,3, different damage
states are partially overlapped and the corresponding confi-
dence intervals are slightly narrower.

Figure 14(a) shows the correlation between the COP α1,1 and
COP α1,4 for damage intersecting path 3-4. Note that different
realizations of damage level 2 and 3 overlap on each other. In
addition, the group formed by different realizations of damage
level 2, 3, 4, and 5 remain close to each other. Only the healthy
realizations and damage level 1 are well separated. Figure
14(b) shows the correlation between the COP α1,1 and COP
α1,2 for damage non-intersecting path 2-4. Note that, in this
case, all the realizations of damage level 1, 2, 3, 4, and 5
are overlapped on each other. Only the healthy realizations
remain well separated.

Figure 15 shows the damage detection performance for the
rotorcraft blade for damage intersecting path 3-4 using the
wavelet basis functions. In Figure 15(a), the covariance ma-
trix was derived from the 20 experimental healthy signals and
in Figure 15(b), FS-TAR(4)[2,2] model-based covariance ma-
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(a)

(b)

Fig. 16. Damage detection performance of the FS-
TAR(2)[1,1] model for the rotorcraft blade for damage non-
intersecting path 2-4: (a) using the experimental covari-
ance matrix derived from 20 healthy realizations; and (b)
using the FS-TAR(2)[1,1] model-based covariance matrix.

trix was used. Note that for both cases, perfect damage de-
tection was achieved. The α level used in Figure 15(a) was
1×10−8. In Figure 15(b), it was manually adjusted as α level
gets close to 1. Similarly, Figure 16 shows the damage de-
tection performance of the damage non-intersecting path 2-4.
Note that perfect damage detection was achieved in this case
too. The α level used in Figure 16(a) was 1× 10−8 while it
was manually adjusted in Figure 16(b).

Figure 17 shows the damage identification performance for
the damage intersecting path 3-4 for the rotorcraft blade for
different damage states using the experimental covariance ma-
trix derived from 20 healthy realizations. Note that perfect
damage identification was achieved with no missed classifica-
tion. As for example, when identifying damage level 3 (Fig-
ure 17(c)), all the test statistics for damage level 3 remain be-
low the threshold (dotted red line) and the test statistics for
all other damage level go outside the threshold. Healthy test
statistics are also shown to reinforce the fact that simultane-
ous damage detection and identification are possible using the
same identified model structure.

Figure 18 shows the time-varying damage detection using
the wavelet basis function for damage intersecting path 3-
4. In Figure 18(a), experimental covariance matrix derived
from 20 experimental healthy signals and in Figure 18(b), FS-
TAR(4)[2,2] model-based covariance matrix were used. In this
case, instead of using the constant COPs, four time-varying
parameters (as the model order is na = 4) α1, α2, α3, and
α4 were used with the associated time-varying covariance.
Note that the 20 healthy realizations of the time-varying test-
statistics (solid blue lines) lie below the threshold (dotted red

(a)

(b)

(c)

(d)

(e)

Fig. 17. Damage identification results of the FS-TAR(4)[2,2]
model for the rotorcraft blade for damage intersecting
path 3-4 using the experimental covariance matrix derived
from 20 healthy realizations: (a) damage level 1; (b) dam-
age level 2; (c) damage level 3; (d) damage level 4; (e) dam-
age level 5.

line) for all time instants. And the time-varying test statistics
for damage level 1, 2, 3, 4, and 5 (all realizations) crosses the
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(a)

(b)

Fig. 18. Time-varying damage detection performance of
the FS-TAR(4)[2,2] model for the rotorcraft blade for dam-
age intersecting path 3-4: (a) using the experimental co-
variance matrix derived from 20 healthy realizations; and
(b) using the FS-TAR(4)[2,2] model-based covariance ma-
trix.
threshold. As a result, perfect damage detection was achieved
for damage intersecting path using both the experimental and
theoretical covariance matrix. The α level used in Figure
18(a) was 1× 10−8. On the other hand, it was manually ad-
justed for Figure 18(b).

Figure 19 shows the time-varying damage identification re-
sults for the rotorcraft blade for damage intersecting path 3-4.
In this case, experimental covariance matrix derived from 20
healthy realizations was used. Note that perfect damage iden-
tification was achieved for all different damage levels. That
is, the corresponding structural state lies below the threshold
for all the time instants and all other structural states cross the
threshold for at least at one time instant.

CONCLUDING REMARKS

The objective of this work was the experimental assessment of
a statistical damage diagnosis framework in the context of ul-
trasonic guided wave-based damage diagnosis using paramet-
ric stochastic time-varying time series models on a full-scale
rotorcraft blade. In the FS-TAR formulation, model parame-
ters evolve in a deterministic way as they are projected onto
appropriate functional subspaces. The model parameters were
used to diagnose damage based on the definition of statistical
quantities and corresponding hypothesis testing procedures.

Before presenting the damage diagnosis results on the rotor-
craft blade, damage detection in an aluminum plate is dis-
cussed first. It was found that, for the aluminum plate, per-
fect damage detection and identification are possible both for
damage intersecting and non-intersecting paths. The use of

(a)

(b)

(c)

(d)

(e)

Fig. 19. Time-varying damage identification results of the
FS-TAR(4)[2,2] model for the rotorcraft blade for damage
intersecting path 3-4 using the experimental covariance
matrix derived from 20 healthy realizations: (a) damage
level 1; (b) damage level 2; (c) damage level 3; (d) damage
level 4; (e) damage level 5.

a specific type of covariance matrix, that is, either the exper-
imental or the theoretical one does not change the outcome
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of the damage diagnosis process. Again, from the aluminum
plate, a longer signal is available as the signals do not die out
so quickly as the rotorcraft blade.

Using the same approach as in the aluminum plate, perfect
damage detection and identification for the rotorcraft blade
were achieved only for the damage intersecting paths. For
damage non-intersecting paths, perfect damage detection but
partial damage identification was achieved. Again, for the
case of the rotorcraft blade, the use of experimental covari-
ance matrix results in perfect damage detection and identifi-
cation. The theoretical covariance matrix was not used in this
case, because it results in missed damage and damage mis-
classifications. Again, the signal length is relatively shorter as
it dies out quickly due to the viscous nature of the foam core
used in the construction of the composite rotorcraft blade. In
conclusion, the results of this study indicated that ultrasonic
waves modeled by the FS-TAR models can be used to perform
health monitoring of rotorcraft blades.
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3Ibáñez, F., Baltazar, A., and Mijarez, R., “Detection of
damage in multiwire cables based on wavelet entropy evo-
lution,” Smart Materials and Structures, Vol. 24, (8), 2015,
pp. 085036.

4Su, Z., Zhou, C., Hong, M., Cheng, L., Wang, Q., and
Qing, X., “Acousto-ultrasonics-based fatigue damage char-
acterization: Linear versus nonlinear signal features,” Me-
chanical Systems and Signal Processing, Vol. 45, (1), 2014,
pp. 225–239.

5Ahmed, S. and Kopsaftopoulos, F. P., “Uncertainty quan-
tification of guided waves propagation for active sensing
structural health monitoring,” Proceedings of the Vertical
Flight Society 75th Annual Forum & Technology Display,
May 2019.

6Qiu, L., Yuan, S., and Boller, C., “An adaptive guided
wave-Gaussian mixture model for damage monitoring under
time-varying conditions: Validation in a full-scale aircraft fa-
tigue test,” Structural health monitoring, Vol. 16, (5), 2017,
pp. 501–517.

7Haynes, C., Todd, M. D., Flynn, E., and Croxford,
A., “Statistically-based damage detection in geometrically-
complex structures using ultrasonic interrogation,” Structural
Health Monitoring, Vol. 12, (2), 2013, pp. 141–152.

8Amer, A. and Kopsaftopoulos, F. P., “Statistical guided-
waves-based structural health monitoring via stochastic non-
parametric time series models,” Structural Health Monitoring,
2021, pp. 1–28.

9Fassois, S. D. and Kopsaftopoulos, F. P., “Statistical time
series methods for vibration based structural health monitor-
ing,” New trends in structural health monitoring, Springer,
2013, pp. 209–264.

10Kopsaftopoulos, F. P. and Fassois, S. D., “Vibration based
health monitoring for a lightweight truss structure: experi-
mental assessment of several statistical time series methods,”
Mechanical Systems and Signal Processing, Vol. 24, 2010,
pp. 1977–1997.

11Ahmed, S. and Kopsaftopoulos, F., “Stochastic Identifi-
cation of Guided Wave Propagation under Ambient Tem-
perature via Non-Stationary Time Series Models,” Sensors,
Vol. 21, (16), 2021.
doi: 10.3390/s21165672

12Roy, S., Lonkar, K., Janapati, V., and Chang, F.-K.,
“A novel physics-based temperature compensation model for
structural health monitoring using ultrasonic guided waves,”
Structural Health Monitoring, Vol. 13, (3), 2014, pp. 321–
342.

13Poulimenos, A. and Fassois, S., “Parametric time-domain
methods for non-stationary random vibration modelling and
analysis—a critical survey and comparison,” Mechanical sys-
tems and signal processing, Vol. 20, (4), 2006, pp. 763–816.

14Spiridonakos, M. and Fassois, S., “An FS-TAR based
method for vibration-response-based fault diagnosis in
stochastic time-varying structures: experimental application
to a pick-and-place mechanism,” Mechanical Systems and
Signal Processing, Vol. 38, (1), 2013, pp. 206–222.

15Sotiriou, D., Kopsaftopoulos, F., and Fassois, S., “An adap-
tive time-series probabilistic framework for 4-D trajectory
conformance monitoring,” IEEE Transactions on Intelligent
Transportation Systems, Vol. 17, (6), 2016, pp. 1606–1616.

16Ljung, L., System Identification: Theory for the User,
Prentice–Hall, second edition, 1999.

17Akaike, H., “Prediction and Entropy,” A Celebration of
Statistics, edited by A. C. Atkinson and S. E. Fienberg, 1985.

18Schwarz, G., “Estimating the Dimension of a Model,” The
Annals of Statistics, Vol. 6, (2), 1978, pp. 461 – 464.

14


