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ABSTRACT
With the needs for full structural state awareness and health monitoring as well as emerging challenges of Urban Air
Mobility (UAV) and Future Vertical Lift (FVL), Health and Usage Monitoring systems (HUMS) need to be more
accurate, robust and reliable than ever before. In active-sensing guided-wave networks in particular, conventional
Damage Index (DI)-based approaches have been the industry standard for decades because of their computational
simplicity and ability to do the damage detection and quantification tasks. However, under specific circumstances, like
for specific actuator-sensor paths within a network or due to varying operational conditions, DIs can suffer from various
drawbacks that make them prone to inaccurate and/or ineffective damage quantification. This study builds on previous
work by the authors where DIs were used to train single-output Gaussian Process regression models (SOGPRMs)
for robust damage quantification, and the accuracy limit of SOGPRMs was shown to depend on the evolution of the
chosen DI formulation with damage size. In this study, multi-output GPRMs (MOGPRMs) are used instead in order
to leverage information about damage size from multiple actuator-sensor path DI values. It is shown that the proposed
approach can overcome the different shortcomings of DI evolution with damage size in the different path by capturing
the correlation between the DI evolution for different paths. The proposed framework is applied for an Al coupon with
simulated damage, and the damage size quantification results are compared with those of SOGPRMs. It is shown that
the information fusion approach exhibited by MOGPRMs gives more accurate damage size estimations compared to
SOGPRMs.

INTRODUCTION

Novel Urban Air Mobility (UAM) and Future Vertical Lift
(FVL) aircraft configurations are shaping the future tech-
nologies through boasting research in many fields. One of
the most relevant of such fields to the Health and Usage
Monitoring Systems (HUMS) community is structural/state
awareness (Refs. 1–4), where information provided by sen-
sors on the aircraft can be used to detect and identify vary-
ing states and/or damage events. In this context, the effec-
tiveness of HUMS today depends heavily on the availability
of information-rich sensor data from multiple sensors across
an aircraft. In particular, sensor networks designed to moni-
tor structural “hot spots” can provide critical information on
damage development at an early stage (Refs. 5–7) – infor-
mation that is conventionally leveraged in the industry today
by using health/damage indicators (herein denoted as DIs)
(Refs. 8–10). One of the major challenges facing such en-
deavors is the variation in the “amount” of damage-relevant
information carried by the different signal paths within a given
sensor network for the purposes of damage detection and
quantification. One cause of such a phenomenon is the sig-
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nal paths intersecting or not intersecting damage (Ref. 11),
which in turn might lead to the DIs of the latter paths evolv-
ing in a way uncorrelated to damage (Ref. 12), making those
paths not very useful in damage quantification (Refs. 13, 14).
Another reason for the said variation is the phenomenon of
saturation (Ref. 15), which might occur depending on the
relative location of a signal path from damage. This phe-
nomenon may also limit the amount of information a given
signal path provides beyond a specific damage size. These
causes, along with the oftentimes non-linear and complex
structural response (Refs. 16–18) cause such variations in the
information that can be extracted from each of the different
signal paths within a sensor network.

When it comes to piezoelectric sensor networks, using multi-
path data sets for damage detection and localization is a stan-
dard procedure (Refs. 19–24), where feature extraction met-
rics, oftentimes probabilistic, are used for detecting and ac-
curately localizing damage. However, the problem of accu-
rate damage quantification has been mostly tackled through-
out the literature within the framework of single actuator-
sensor paths (Refs. 17, 25–28), where the signal path with
the largest change in DI values, for instance, would be used
for analysis. That being said, there have been limited efforts
on combining information from different paths and/or SHM
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techniques towards the aim of damage detection and/or quan-
tification (Ref. 29). For instance, observing uncertainties in
each individual path DI (which originate from varying envi-
ronmental/operational conditions), Jin et al. (Ref. 12) pro-
posed an arithmetic fusion algorithm where DIs in the time
and the frequency domains, based on energy and amplitude,
are all summed over all the actuator-sensor path signals com-
ing from a steel plate in order to “visualize” fatigue crack
growth. Also, Derriso et al. (Ref. 30) examined combining
information form guided-wave and acoustic emission signals
for detecting fatigue cracks in Aluminum dogbone samples.
Overall, the techniques fusing information from, or estimating
the correlation between different actuator-sensor path signals
in he literature are either not probabilistic (making them prone
to uncertainties), or do not tackle accurate damage quantifica-
tion.

Indeed, even when it comes to damage detection and quan-
tification using single actuator-sensor path signals in active-
sensing guided-wave SHM, the most promising of such en-
deavors are those involving the use of advanced modeling
techniques for damage detection and quantification (Refs. 19,
31–35), which are used to overcome the drawbacks of con-
ventional DIs. In this context, in recent work, the authors
proposed frameworks based on machine learning techniques
for damage detection and quantification, in which single-
output Gaussian Process Regression & Classification Models
(GPR/CMs) were used (Refs. 14,36), which included the prior
selection of damage-intersecting paths based on statistical
path selection algorithms (Refs. 11, 14). In addition, the idea
of leveraging information from different signal paths for dam-
age quantification was also tackled by the authors (Ref. 13),
in which multiple damage-intersecting, or mixed paths were
used to train single-output GPRMs for more accurate damage
quantification models. However, in the latter study, there were
no prior assumptions on the possible correlation between the
different signal paths; that is, the correlation of the informa-
tion carried by multiple signal paths was not considered.

The aim of the present study is the application of multi-output
GPRMs (MOGPRMs) trained using data from multiple signal
paths are used in order to leverage the many signals coming
from an active-sensing, guided-wave sensor network moni-
toring any given “hot spot”, whilst capturing the correlation
between the different actuator-sensor paths. The proposed
framework does not only promise more accurate damage de-
tection and quantification processes compared to models that
use single-path signals, but also promises a more efficient
learning process by capturing the hidden correlation between
the different signals. Trained using readily-available state-
of-the-art DI results, MOGPRMs are applied to experimental
results from an aluminum coupon in the context of damage
detection and quantification, and then compared with single-
output GPRM (SOGPRM) results in order to highlight the ef-
fect of capturing the said correlation between signals on the
damage state and size prediction accuracy of GPRMs.

BACKGROUND

Reference Damage Index

The state-of-the-art DI formulation used in this study for train-
ing GPRMs was adopted from the work of Janapati et al.
(Ref. 17) owing to the exhibited high sensitivity to damage
features compared to sensitivity to material, sensor, and ad-
hesive properties. Given a healthy signal (G> [C]) and a signal
coming from an unknown state (GD [C]), the selected DI can be
formulated as follows:

#D =
GD [C]√∑=
C=1 G

2
D [C]

, (1a)

#0 =

∑=
C=1 (G> [C] ·#D)

G> [C] ·
∑=
C=1 G

2
> [C]

(1b)

�� =

=∑
C=1
(#D −#>) (1c)

where #D and #> are normalized unknown- and baseline-state
signals, respectively.

Single-output Gaussian Process Regression Models (SOG-
PRMs)

GPRMs are kernel-based linear regression formulations that
have the ability to model non-linear relationships between ob-
servations and inputs. In this study, GPRMs are used to model
the evolution of the / statistic with frequency and/or dam-
age size as will be shown later. Given a training data set D
containing = inputs-observation pairs {(x8 ∈ R� , H8 ∈ R, 8 =
1,2,3, . . . , =}, a GPR model can be formulated as follows:

H = 5 (x) + n (2)

such that a GP prior with mean <(x) and kernel : (x,x′)
is placed on the latent function 5 (x), and an independent,
identically-distributed (iid), zero-mean Gaussian prior with
variance f2

= is placed on the noise term n as follows:

5 (x) ∼ GP(<(x), : (x,x′)), n ∼ 883N(0,f2
=) (3)

In this study, <(x) is set to zero, and the squared exponential
kernel function is used for 5 :

: (x,x′) = f2
0 exp(−1

2
(x−x′))Λ−1 (x−x′)) (4)

where f2
0 is the output signal power (variance), and Λ is a

diagonal matrix of the characteristic length scales of each di-
mension (�, i.e each covariate) in the input data set. There
will be a separate length scale for every covariate in the data.
Thus, for a single-input (i.e. � = 1), the entries along the di-
agonal of Λ−1 will be identical.
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Training GPRM training involves optimizing the hyperpa-
rameters (\ ≡ f2

0 ,Λ,f
2
=) via Type II Maximum Likelihood

(Ref. 37, Chapter 5, pp. 109). In this method, the marginal
likelihood (evidence) of the training observations (outputs) is
maximized with respect to the hyperparameters. For compu-
tational reasons, its negative log is minimized instead as fol-
lows:

\̂ = argmin
\

{− log ?(y|-, \)} (5a)

− log ?(y|-, \) = − logN(y|0, -- +f2
=I) (5b)

= −1
2

y) ( -- +f2
=I)−1y− 1

2
log | -- +f2

=I| −
=

2
log2c (5c)

Prediction One of the most powerful results of the assump-
tions in GPRMs is that a joint Gaussian distribution can be
assumed between the training observations y, and the test ob-
servation(s) (to be predicted) at the set of test inputs (x∗) as
follows: [

y
H∗

]
=N

[
0,  -- +f

2
=I k-x∗

kx∗- :x∗x∗ +f2
=I

]
(6)

In equation 6,  �� is used as a shorthand for  (�, �), and
I is the identity matrix. The predictive distribution over the
prediction y∗ can then be defined from the properties of mul-
tivariate Gaussian distributions (Ref. 38) as follows:

?(H∗ |x∗, -,y) =N(E{H∗},V{H∗}) (7)

such that

E{H∗} = kx∗- ( -- +f2
=I)−1 (8)

V{H∗} = :x∗x∗ −kx∗- ( -- +f2
=I)−1k-x∗ +f2

=) (9)

Multi-output Gaussian Process Regression Models
(MOGPRMs)

The method used in this study for training, and predicting us-
ing, MOGPRMs is the multivariate GPR algorithm presented
in (Ref. 39). The details on the algorithm operation when it
comes to training and prediction are presented therein; a sum-
mary of that presentation will be described next. Briefly, the
algorithm is based on the matrix-variate Gaussian distribution,
for which the probability density function can be presented as
follows:

?(- |",Σ,Ω) = (2c)− 3=
2 det(Σ)− 3

2 det(Ω)− =
2

×etr
(
−1

2
Ω−1 (- −")) Σ−1 (- −")

)
(10)

In the equation above, - ∈ R=×3 , " ∈ R=×3 , Σ ∈ R=×=, and
Ω ∈ R3×3 denote the random matrix, matrix mean, column
covariance and row covariance matrices, respectively. Also,
det(·) and etr(·) denote the determinant and the exponential
of a matrix trace, respectively. A random matrix following a
matrix-variate Gaussian distribution can be written as:

- ∼MN(",Σ,Ω) (11)

In the Multivariate GPR algorithm, the regression represen-
tation can be posed as follows: with each input, there lies 3
outputs, and thus the data set can be given by {x8 ∈ R� ,y8 ∈
R1×3 , 8 = 1,2,3, . . . , =}, such that � is the dimension of each
input point. The MOGPRM can then be formulated as:

y8 = f (G8), (12)
f ∼MGP(u(x), : ′x,x′ ,Ω)

such thatMGP denotes a multivariate Gaussian Process, u is
the vector mean of the process (which is set typically to 0 as
done with the SOGPRMs), and : ′ is the used kernel (herein
also the squared exponential kernel described in equation 4
plus an added noise term, which replaces the missing noise
term in the MOGPRM formulation in equation 12, that is:

: ′(x8 ,x 9 ) = : (x8 ,x 9 ) + X8 9f2
= (13)

where X8 9 is the Kronecker delta.

Training just like with SOGPRM, minimizing the negative
log likelihood function was chosen in (Ref. 39) as the hyper-
parameter optimization method. However, due to the presence
of the extra hyperparameters in Ω, the negative log marginal
likelihood would look as follows:

=3

2
ln(2c) + 3

2
ln(det( ′)) + =

2
lndet(Ω)

+1
2

tr(( ′)−1.Ω−1.) ) (14)

In this equation, . is the full matrix of training outputs
(. ∈ R=×3), and regular gradient-based numerical optimiza-
tion techniques can be used just like with SOGPRMs.

Prediction Similar to SOGPRMs, prediction of each new set
of outputs f∗ given incoming test inputs -∗ can be achieved as
follows:

?(f∗ |-,., -∗) =MN(E{f∗}, Σ̂, Ω̂) (15)

such that

E{f∗} =  ′)-∗- 
′−1
--. (16)

V{f∗} = Σ̂⊗ Ω̂ = [ ′-∗-∗ − 
′)
-∗-

 ′−1
-- 

′
-∗-
] ⊗Ω (17)

such that E{f∗} and V{f∗} are the vectors of predictive means
and variances for the test points -∗. Note that, in this context,
f∗ is equivalent to y∗ in the SOGPRM context.

Damage Size Quantification

In the case presented herein, the test observations at which
prediction should take place are the GPRM targets/outputs,
not the inputs i.e. a test DI (H∗ - target) would be available, and
the damage size (G∗ - input) would be estimated by the GPRM.
This reverse prediction process of predicting the damage size
from a test DI point can be applied by estimating the proba-
bility that a test target value H∗ belongs to a specific damage
size G. The process of estimating this input state probability in
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Fig. 1. A schematic flow diagram showing the steps taken in this study to calculate the damage size prediction probability.

schematically outlines in Figure 1. As shown, this probability
(%(x∗ = x)) can be estimated from the Cumulative Distribu-
tion Function of the targets (�H (·)) as follows:

%(x∗ = x) = �H (1;�{H},V{H}) −�- (0;�{H},V{H}) (18)

such that,

�H (B;`,f) =
1

f
√

2c

B∑
C=−∞

4
−(C−`)2

2f2 (19a)

0 = H∗−2
√
V{H2;>B4BC } (19b)

1 = H∗ +2
√
V{H2;>B4BC } (19c)

such that V{H2;>B4BC } is the GPRM predictive variance of the
closest training DI value (H2;>B4BC ) to the value of the incom-
ing test DI point (H∗), while E{H} and V{H} are the GPRM
predictive mean and variance at the training input G, respec-
tively. This probability is calculated for every damage size
in the training data, and information from the uncertainty in
the GPRM (predictive variance) corresponding to the closest
training DI value to the test one is utilized for properly esti-
mating damage size probability. This damage size quantifi-
cation framework can be easily expanded to MOGPRMs by
replacing the predictive moments of SOGPRMs by those of
MOGPRMs.

EXPERIMENTAL SETUP

A 152.4×304.8 mm (6×12 in) 6061 Aluminum coupon (2.36
mm/0.093 in thick) was used to demonstrate the proposed ap-
proach in this study. Six piezoelectric sensors type PZT-5A
(Acellent Technologies, Inc) were attached to the coupon us-
ing Hysol EA 9394 adhesive. For curing the adhesive, the
coupon was put under vacuum for 24 hours at room temper-
ature. The coupon was then mounted onto a tensile testing
machine (Instron, Inc). This allowed for the application of
multiple static loading conditions in order to simulate real-
life situations. 1-4 three-gram weights were attached onto the

Fig. 2. The test case used in this study with four 3-gm
weights simulating damage (largest damage size) shown
here with the testing machine’s grips.

surface of the plate during each loading state in the manner
shown in Figure 2. For brevity, data sets from a static load
state of 10 kN only were presented here.

An actuation of 5-peak tone bursts (5-cycle Hamming-filtered
sine waves) with an amplitude of 90 V peak to peak and 250
kHz center frequency was generated at each sensor and the
response signals of the sensors on the other side of the plate
were collected. Twenty response signals per structural case
were collected at each sensor (sampling rate of 24 MHz) us-
ing a ScanGenie III data acquisition system (Acellent Tech-
nologies, Inc). Acquired signals were imported into Matlab.1

for further analysis.

For the implementation of the GPRMs, DI values from differ-
ent numbers of paths were chosen and used to simultaneously

1Matlab version R2020a, GPRM training and prediction:
the different functions within the GPML package available at
http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html, as
well as the Multivariate Gaussian Process Regression (MV-GPR) package
available at http://www.github.com/Magica-Chen/gptp multi output.com
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a b

c d
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Fig. 3. Response signals and DI values for multiple damage sizes in the Al coupon at a load of 10 kN: (a) signal from
path 1-4; (b) DI values for path 1-4; (c) signal from path 5-1; (b) DI values for path 5-1; (e) signal from path 6-2; (f) DI
values for path 6-2. The red circles in the DI plots, (b), (d) and (f), correspond to the sample DI mean for each damage
size.

train MOGPRMs as well as independently train SOGPRMs,
i.e. one SOGPRM per path (e.g. for three paths, one MOG-
PRM and three SOGPRMs are trained). Then, the prediction
results produced using the framework outlined in Figure 1 are
compared across MO and SOGPRMs for each path in order to
show the potential improvements of capturing cross-path data
correlation training MOGPRMs for multiple paths simultane-
ously.

RESULTS AND DISCUSSION

MOGPRMs versus SOGPRMs

Each actuator-sensor signal path within a sensor network
would generally result in a different DI evolution with dam-
age size, with some showing uniform evolution, and some
paths exhibiting DI saturation. Also, with the abundance of

varying operational and/or environmental states, the amount
of variation in the DI values would differ across different
paths and/or damage sizes. The premise of the work presented
herein is to leverage whatever information about damage size
that is embedded within the signals coming from each path.
This proposed information-fusion framework should then be
able to provide more accurate and robust damage size esti-
mations since it would be capable of making up for any non-
uniformity in DI evolution, which could otherwise throw off
single-path quantification models. Figure 3 shows the sig-
nals and corresponding DI plots for three different paths in
the Al coupon under different damage states. The three paths
presented here are a combination of damage-intersecting and
damage-non-intersecting paths. They also exhibit somewhat
different DI evolution, with path 1-4 showing varying levels of
noise across damage sizes, path 5-1 showing some saturation
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Fig. 4. GPRM predictive mean and confidence intervals (CIs) for the Al coupon based on the path-specific DI values
from MO (three paths) and SOGPRMs: (a) MOGPRM predictive mean and CIs for path 1-4; (b) SOGPRM predictive
mean and CIs for path 1-4; (c) MOGPRM predictive mean and CIs for path 5-1; (d) SOGPRM predictive mean and CIs
for path 5-1; (e) MOGPRM predictive mean and CIs for path 6-2; (f) SOGPRM predictive mean and CIs for path 6-2.

between the DI values when 2 and 3 weights were attached,
and path 6-2 showing saturation when 3 and 4 weights were
attached to the coupon. As will be shown later, these non-
uniformity features in the DI values can potentially throw off
SOGPRMs trained for damage quantification using only any
of these paths.

The DI values presented in the different panels of Figure 3
were separated into training and testing data sets for the pur-
poses of training each SOGPRM (three total) as well as one
MOGPRM. Table 1 summarizes the training and testing pro-
cedures of the models presented here, and the test data-based
mean squared error was used as the criteria for comparing the
trained models.

Figure 4 panels a, c, and e show the resulting MOGPRM pre-
dictive means and confidence bounds for each of the three
paths presented in Figure 3. Panels b, d, and f of the same
Figure show the corresponding SOGPRM predictive moments
for the three paths. It is worth mentioning here that, again,

the MOGPRM results come form a single trained MOGPRM,
while the SOGPRM results come from three different models.
As shown, the MOGPRMs can nicely capture the DI evolution
for the three studied paths just like SOGPRMs. However, As
shown in panels a, c, and e, the MOGPRM tends to under-
estimate the variance in the data as clear in the narrow confi-
dence bounds compared to SOGPRMs. This underestimation
may be avoided by proper initialization of the MOGPRM hy-

Table 1. Summary of DI-trained GPRM∗ information† for
three paths in the Al coupon with simulated damage.

Signal MSE Training Time (s) Prediction Time (s)
Path SO MO SO MO SO MO
1-4 1.15E-6 8.97E-4 4.81 0.076
5-1 3.04E-6 3.6E-3 3.94 58.09 0.076 0.044
6-2 1.45E-6 3.8E-3 4.04 0.070
∗500 DI data points from each path (out of 2000) were used for training.
†Numbers approximated to the last quoted decimal place.
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c d

Fig. 5. Indicative damage size prediction results from MO (three paths) and SOGPRMs for path 6-2 in the Al coupon:
(a) prediction probabilities for the healthy case; (b) prediction probabilities for two attached weights; (c) prediction
probabilities for three attached weights; (d) prediction probabilities for four attached weights. Dashed vertical lines
indicate the maximum probability corresponding (by color) to each model.

perparameters. This being said, as will be shown next, this
phenomenon did not affect the accuracy of damage size esti-
mation in this study.

In order to compare the damage quantification performance of
the MOGPRM and SOGPRM approaches, damage size prob-
abilities of test DI data sets (data not used in training) were es-
timated for path 6-2 and are shown in Figure 5 for the healthy
and three damage states. As shown, although both models
show accurate damage size estimation in the healthy state and
in the case of two attached weights as indicated by the maxi-
mum probabilities (dashed vertical lines), the MOGPRM sur-
passes the SOGPRM when it comes to damage size estimation
in the cases of three and four attached weights as shown in
panels c and d, respectively. This enhancement exhibited by
the MOGPRMs can be attributed to the MOGPRMs capturing
the correlation between and fusing the information from the
different path DI values at those two damage states, and con-
sequently producing a more accurate prediction in each case.
It is important to note here that the results shown in Figure 5
only come from four test DI points. In order to evaluate the
overall performances of each model type, summary results of
predictions from all DI test points need to be examined.

Figure 6 shows the summary results from the trained MOG-
PRM and SOGPRMs for all three paths shown in Figure 3. As
shown, the trained MOGPRM results in generally sharper pre-
dictions for the different DI values with less outliers, as exhib-
ited by the case of four attached weights in path 1-4 (panels a
and b), the cases of 2 and 3 attached weights in path 5-1 (pan-
els c and d), and the case of three attached weights in path 6-2
(panels e and f). In the latter path, for the case of four attached

weights, it can be observed in panel (f) that the trained SOG-
PRM for this path cannot accurately differentiate between this
case and the case of three attached weights, with the median
and percentile predictions all lying around three weights, ow-
ing to the overlap in their DI values (see Figure 3f). However,
the trained MOGPRM shows a sharper three-weight state pre-
diction, as well as expands the percentiles of the 4-weight case
to encompass the true state (4 weights) as shown in panel (e).
These summary results show the superiority of MOGPRMs
over SOGPRMs, as well as the capability of the former to
fuse damage size information from multiple-path DI data sets
thus making up for any shortcomings in single-path DI sets.

Effect of Number of Paths in MOGPRMs

With the superiority of MOGPRMs concluded, the question
of whether adding information from more paths (i.e. adding
DI sets from more paths in the MOGPRM training process)
would yield better results was tackled next. Studies were
done on training MOGPRMs using 5, 7, and 9 paths. Ta-
ble 2 shows the paths from which the training DI sets were
extracted for each of the four MOGPRMs. Figure 7 panels
a, b, c and d show summary prediction results for path 5-1
coming from using DI sets from 3, 5, 7, and 9 paths, respec-
tively, in training MOGPRMs. As shown, although the 3-path
model already exhibited sharper prediction results compared
to the trained SOGPRM (as shown in Figure 6c), especially
around the saturation area (damage sizes of 2 and 3), the 5-
path model exhibits yet sharper predictions than either. These
results show that adding more paths in the learning process
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Fig. 6. True/predicted damage size boxplots for the Al coupon: (a) 3-path MOGPRM state predictions for path 1-4;
(b) SOGPRM state predictions for path 1-4; (c) 3-path MOGPRM state predictions for path 5-1; (d) SOGPRM state
predictions for path 5-1; (e) 3-path MOGPRM state predictions for path 6-2; (f) SOGPRM state predictions for path
6-2.

Table 2. Actuator-sensor signal paths used in the different MOGPRMs presented herein.
Number of included paths 1-4 5-1 6-3 4-2 6-2 4-1 4-3 2-6 1-6

Three © © ©
Five © © © © ©

Seven © © © © © © ©
Nine © © © © © © © © ©

can lead to more accurate and robust damage size estimations.
Switching onto the results for 7 paths (panel c), the results
seem to be almost the same as for the 5-path model, with a
few more outliers for the 2-weight damage state, and slightly
broader prediction spectrum for the 4-weight case. Looking
onto the results of the MOGPRM trained using 9 paths (panel
d), it can be concluded that adding more paths might as well
decrease accuracy, as indicated by the more dispersed predic-
tions around the 2 and 3-weight cases. This deterioration in
damage quantification accuracy can be attributed to the inclu-
sion, in the training process, of DI sets from specific paths that
exhibit a high degree of saturation around these two weights.
This observation dictates that training MOGPRMs needs to be

done with care with respect to the DI evolution of the paths be-
ing included in the training process: if many of the DI sets in-
volved in the training process do not evolve nicely with dam-
age size, this will lead to less accurate damage predictions.

In order to “visualize” the changes in damage size predic-
tion probabilities as more paths are involved in the training
of MOGPRMs, the prediction probabilities for two indicative
test DI points were plotted for path 5-1 (Figure 8). As shown
in Figure 8a, the increase in prediction accuracy by adding DI
data sets from more paths to the training process can be clearly
seen from the uniform narrowing of the prediction probabil-
ity as more paths are added. This is attributed again to the
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c d

Fig. 7. MOGPRM true/predicted damage size boxplots for the Al coupon for path 5-1: (a) 3-path MOGPRM state
predictions; (b) 5-path MOGPRM state predictions; (c) 7-path MOGPRM state predictions; (d) 9-path MOGPRM
state predictions.

a b

Fig. 8. Indicative damage size prediction results for path 5-1 from multiple MOGPRMs trained with DI sets from
a different number of paths in the Al coupon: (a) prediction probabilities for two attached weights; (b) prediction
probabilities for three attached weights. Dashed vertical lines indicate the maximum probability corresponding (by
color) to each MOGPRM.

evolution of the DI sets used in training each MOGPRM. Ob-
serving the evolution of the prediction probabilities for the
damage size of three attached weights (Figure 8b), the same
overall trend can be observed up till the 7-path model, albeit
with a very slight enhancement in the predicted damage size
for the three models. However, the 9-path MOGPRM shows
the broadest prediction probability, as expected from the re-
sults shown in Figure 7d. This is again attributed to the nature
of the added training data sets.

Figures 9 and 10 show the corresponding analysis for path 1-
4. As shown in Figure 9, a very similar trend in prediction
accuracy evolves for path 1-4 compared to path 5-1. Also, as
can be seen with the predictions shown in Figure 10, which
are coming from indicative test DI points, the 9-path models
shows a slightly less sharp (panel a) or lower (panel b) predic-
tion probability, while the three other models show similar re-

sults, with the probabilities generally becoming better as more
paths are included into the training process. Two conclusions
can be made from this analysis. Firstly, adding DI sets from
more paths has to be implemented considering the evolution
of the DI with damage size. Secondly, in the case the “right”
data sets are added to the MOGPRM training process, there
seems to be some damage sizes for which there is a tangible
enhancement in quantification accuracy, whilst there is barely
any enhancement for other damage sizes. This latter conclu-
sion might be related to the dispersion (or noise) in the calcu-
lated DI values for each specific damage size. Overall, these
results shed light on the importance of selecting the proper DI
data sets (or proper paths) when training MOGPRMs where
the evolution of the DI values with damage size, as well as
their dispersion for each, need to be considered.
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a b

c d

Fig. 9. MOGPRM true/predicted damage size boxplots for the Al coupon for path 1-4: (a) 3-path MOGPRM state
predictions; (b) 5-path MOGPRM state predictions; (c) 7-path MOGPRM state predictions; (d) 9-path MOGPRM
state predictions.

a b

Fig. 10. Indicative damage size prediction results for path 1-4 from multiple MOGPRMs trained with DI sets from a
different number of paths in the Al coupon: (a) prediction probabilities for one attached weight; (b) prediction prob-
abilities for two attached weights. Dashed vertical lines indicate the maximum probability corresponding (by color) to
each MOGPRM.

CONCLUSIONS

In this study, an information fusion approach was proposed
for accurate and robust damage quantification within active-
sensing, guided-wave SHM networks. Multi-output Gaussian
Process regression models (MOGPRMs) were trained using
DI values coming from different actuator-sensor paths in order
to leverage damage size information from each path-based DI
data set, while making up for the shortcomings of following
damage evolution that might be encountered with some paths.
The proposed framework was applied onto an Al coupon with
multiple simulated damage states (attached weights), and the
damage size prediction results were presented and compared
to those of independently training one single-output GPRM
(SOGPRM) for each path. It was shown that MOGPRMs
exhibit more accurate and robust damage size estimation as
shown by the sharper predictions and reduced number of out-

liers for each path. In addition, it was also shown that adding
DI data sets from more paths in the MOGPRM training pro-
cess has the potential of yielding more accurate (sharper)
damage size predictions as long as the added DI data sets
from the different paths do not exhibit too much distortion
in the evolution with damage size or too much noise for each
damage size. Overall, the approach proposed herein exhibits
efficient handling of multi-path data sets and shows promise
for probabilistic damage quantification within active-sensing,
guided-wave SHM.
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saftopoulos, kopsaf@rpi.edu

ACKNOWLEDGMENTS

This work is carried out at the Rensselaer Polytechnic In-
stitute under the Army/Navy/NASA Vertical Lift Research

10



Center of Excellence (VLRCOE) Program, grant number
W911W61120012, with Dr. Mahendra Bhagwat and Dr.
William Lewis as Technical Monitors.

REFERENCES
1Ahmed, S., Amer, A., Varela, C., and Kopsaftopoulos, F. P.,

“Data Driven State Awareness for Fly-by-Feel Aerial Vehicles
via Adaptive Time Series and Gaussian Process Regression
Models,” Proceedings of the InfoSymbiotics/DDDAS2020
Conference, 2020.

2Kopsaftopoulos, F., Nardari, R., Li, Y.-H., and Chang,
F.-K., “A stochastic global identification framework for
aerospace structures operating under varying flight states,”
Mechanical Systems and Signal Processing, Vol. 98, 2018,
pp. 425–447.
doi: 10.1016/j.ymssp.2017.05.001

3Dutta, A., McKay, M., Kopsaftopoulos, F., and Gandhi,
F., “Rotor Fault Detection and Identification on a Hexacopter
Based on Statistical Time Series Methods,” Vertical Flight So-
ciety 75th Annual Forum, Philadelphia, PA, May 2019.

4Dutta, A., McKay, M., Kopsaftopoulos, F., and Gandhi, F.,
“Statistical Time Series Methods for Multicopter Fault Detec-
tion and Identification,” Vertical Flight Society International
Powered Lift Conference, San Jose, CA, Jan 2020.

5Yadav, S. K., Chung, H., Kopsaftopoulos, F. P., and Chang,
F.-K., “Damage Quantification of Active Sensing Acousto-
ultrasound-based SHM Based on a Multi-path Unit-cell Ap-
proach,” Proceedings of the 11th International Workshop
on Structural Health Monitoring (IWSHM 2017), September
2017.

6Mitra, M. and Gopalakrishnan, S., “Guided wave based
structural health monitoring: A review,” Smart Materials and
Structures, Vol. 25, (5), MAY 2016.

7Diamanti, K. and Soutis, C., “Structural health monitor-
ing techniques for aircraft composite structures,” Progress in
Aerospace Sciences, Vol. 46, (8), NOV 2010, pp. 342–352.

8Davis, M., Bouquillon, B., Smith, M., Allred, C., Sarjeant,
R., Loverich, J., and Bordick, N., “Rotor load and health mon-
itoring sensor technology,” American Helicopter Society 71st
Annual Forum Proceedings, May May 2015.

9LeFevre, B., Davis, M., Marr, C., Rusak, D., and John-
son, C., “Integrated Hybrid Structural Management System
(IHSMS): usage and loads monitoring,” American Helicopter
Society 73st Annual Forum & Technology Display Proceed-
ings,, May 2017.

10Schenck, E., Davis, M., Bond, R., Meyer, J., and
Rusak, D., “Integrated Hybrid Structural Management System
(IHSMS) – aircraft impact monitoring,” American Helicopter
Society 73rd Annual Forum Proceedings, May 2017.

11Amer, A. and Kopsaftopoulos, F. P., “Probabilistic active
sensing acousto-ultrasound SHM based on non-parametric
stochastic representations,” Proceedings of the Vertical Flight
Society 75th Annual Forum & Technology Display, May
2019.
12Jin, H., Yan, J., Li, W., and Qing, X., “Monitoring of fa-

tigue crack propagation by damage index of ultrasonic guided
waves calculated by various acoustic features,” Applied Sci-
ences, Vol. 9, 2019, pp. 4254.
13Amer, A. and Kopsaftopoulos, F. P., “Probabilistic Damage

Quantification via the Integration of Non-parametric Time-
series and Gaussian Process Regression Models,” Proceedings
of the 12th International Workshop on Structural Health Mon-
itoring (IWSHM 2019), September 2019.
14Amer, A. and Kopsaftopoulos, F. P., “Towards Unified

Probabilistic Rotorcraft Damage Detection and Quantification
via Non-parametric Time Series and Gaussian Process Re-
gression Models,” Proceedings of the Vertical Flight Society
76th Annual Forum & Technology Display, October 2020.
15Castro, E., Moreno-Garcia, P., and Gallego, A., “Damage

Detection in CFRP Plates Using Spectral Entropy,” Shock and
Vibration, 2014, pp. 1–8.
16Wilson, C. L., Lonkar, K., Roy, S., Kopsaftopoulos, F., and

Chang, F.-K., “Structural Health Monitoring of Composites,”
Comprehensive Composite Materials II, edited by P. W. R.
Beaumont and C. H. Zweben, Elsevier Ltd., 2018, pp. 382–
407.
17Janapati, V., Kopsaftopoulos, F., Li, F., Lee, S., and

Chang, F.-K., “Damage detection sensitivity characteriza-
tion of acousto-ultrasound-based structural health monitoring
techniques,” Structural Health Monitoring, Vol. 15, (2), 2016,
pp. 143–161.
18Ahmed, S. and Kopsaftopoulos, F. P., “Uncertainty quan-

tification of guided waves propagation for active sensing
structural health monitoring,” Proceedings of the Vertical
Flight Society 75th Annual Forum & Technology Display,
May 2019.
19Zhao, J., Gao, H. D., Chang, G. F., Ayhan, B., Yan, F.,

Kwan, C., and Rose, J. L., “Active health monitoring of
an aircraft wing with embedded piezoelectric sensor/actuator
network: I. Defect detection, localization and growth moni-
toring,” Smart Materials and Structures, Vol. 16, (4), 2007,
pp. 1208–1217.
20Memmolo, V., Ricci, F., Boffa, N. D., Maio, L., and

Monaco, E., “Structural Health Monitoring in Composites
Based on Probabilistic Reconstruction Techniques,” Procedia
Engineering, Vol. 167, 2016, pp. 48–55.
21Flynn, E. B., Todd, M. D., Wilcox, P. D., Drinkwa-

ter, B. W., Croxford, A. J., and Kessler, S., “Maximum-
likelihood estimation of damage location in guided-wave
structural health monitoring,” Proceedings of The Royal Soci-
ety A, Burlington, VT, Vol. 467, (2133), 2011, pp. 2575–2596.

11



22Todd, M. D., Flynn, E. B., Wilcox, P. D., Drinkwa-
ter, B. W., Croxford, A. J., and Kessler, S., “Ultrasonic
wave-based defect localization using probabilistic modeling,”
American Institute of Physics Conference Proceedings, May
2012.

23Clarke, T. and Cawley, P., “Enhancing the defect lo-
calization capability of a guided wave SHM system ap-
plied to a complex structure,” Structural Health Monitoring,
Vol. 10, (3), 2011, pp. 247–259.

24Sharif Khodaei, Z. and Aliabadi, M. H., “A Multi-Level
Decision Fusion Strategy for Condition Based Maintenance
of Composite Structures.” Materials, Vol. 9, (9), September
2016.

25Xu, B., Zhang, T., Song, G., and Gu, H., “Active interface
debonding detection of a concrete-filled steel tube with piezo-
electric technologies using wavelet packet analysis,” Mechan-
ical Systems and Signal Processing, Vol. 36, 2013, pp. 7–17.

26Ihn, J. and Chang, F.-K., “Pitch-catch active sensing meth-
ods in structural health monitoring for aircraft structures,”
Structural Health Monitoring, Vol. 7, (1), 2008, pp. 5–19.

27Giurgiutiu, V., “Piezoelectric Wafer Active Sensors for
Structural Health Monitoring of Composite Structures Using
Tuned Guided Waves,” Journal of Engineering Materials and
Technology, Vol. 133, (4), 2011, pp. 041012.

28Nasrollahi, A., Deng, W., Ma, Z., and Rizzo, P., “Multi-
modal structural health monitoring based on active and pas-
sive sensing,” Structural Health Monitoring, Vol. 17, (2),
2018, pp. 395–409.

29Kralovec, C. and Schagerl, M., “Review of Structural
Health Monitoring Methods Regarding a Multi-Sensor Ap-
proach for Damage Assessment of Metal and Composite
Structures.” Sensors (Basel, Switzerland), Vol. 20, (3), Febru-
ary 2020.

30Derriso, M. M., Little, I., John, E., Vehorn, K. A.,
Davies, M. J., and DeSimio, M. P., “Crack detection using
combinations of acoustic emission and guided wave signals
from bonded piezoelectric transducers,” Technical report, AIR
FORCE RESEARCH LAB WRIGHT-PATTERSON AFB
OH AIR VEHICLES DIRECTORATE, 2011.

31Su, Z. and Ye, L., “Lamb wave-based quantitative iden-
tification of delamination in CF/EP composite structures us-
ing artificial neural algorithm,” Composite Structures, Vol. 66,
2004, pp. 627–637.

32Song, G., Gu, H., and Mo, Y.-L., “Smart aggregates:
multi-functional sensors for concrete structure —a tutorial
and a review,” Smart Materials and Structures, Vol. 17, 2008,
pp. 033001.

33Tibaduiza, D. A., Mujica, L. E., Rodellar, J., and Güemes,
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