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ABSTRACT
A real-time path planning algorithm is developed to generate time-optimal trajectory for helicopter shipboard land-
ing. The trajectory optimization problem is translated to the lower dimensional flat output space by exploiting the
differential flatness property of the simplified helicopter model. Then, the flat outputs are parameterized using piece-
wise spline functions with adjustable coefficients, which are used to shape the trajectory and approximate the optimal
solution. Further, by allowing the flexible selection of each spline segment’s time-duration and enforcing additional
path constraints, the time-optimality of the planned trajectory is largely preserved without violation of state and input
bounds. Compared to pure temporal discretization methods, the proposed algorithm employs considerably less de-
cision variables and significantly reduces the computational time by 75%, which only leads to a 0.5% growth in the
optimal flight time as the trade-off. The improvement in computational efficiency enables the real-time recalculation
of the time-optimal trajectories on-the-fly if there are unforeseen deviations from the planned flight path.

INTRODUCTION

Autonomous and pilot-assistive landing is an area of active
research because of turbulent shipboard motion, the strong
wind over deck (WOD) and the degraded visual environment
caused by rough sea states. Moreover, landing often needs to
be performed in very limited time under stringent safety con-
straints. As a result, shipboard recovery continues to be one
of the most challenging rotorcraft flight operations. Conse-
quently, the development of the autonomous control strategies
for landing becomes imperative.

The autonomous landing problem can be posed in a stan-
dard guidance, navigation and control (GNC) framework. In
(Refs. 1–3), several state estimation and control strategies
have been developed to enable rotorcrafts to successfully land
onto moving decks by using onboard computer vision sys-
tems. These works focus on incorporating the vision based al-
gorithms into the feedback control loop, where real-time state
estimations of both the rotorcraft and the deck are needed in
order to execute the flight commands. On the other hand, var-
ious feedback controllers applicable for shipboard operations
have also been investigated (Refs. 4–7). These control tech-
niques range from dynamic inversion (DI), sliding mode con-
trol to backstepping control. Among them, the application of
the DI controller on the ship-based helicopter represents an
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especially well-developed category (Refs. 4, 5), as the effec-
tiveness of the controller has been proved by both human pi-
loted and auto-piloted nonlinear simulations. In addition, the
applications of model predictive control (MPC) on helicopter
shipboard landing are presented in (Refs. 8, 9). Such control
strategies differs from the conventional feedback control as
they relies on an internal model to predict and optimize over
the landing trajectory for the future time horizon.

Compared to the large body of research on navigation and
control methods mentioned above, the development of the
guidance algorithms remain quite limited. Current guidance
laws typically plan for the reference trajectory by parame-
terizing single or multiple geometric and/or kinematic vari-
ables (Refs. 4,10,11). while there have been some approaches
aimed towards optimizing the path parameters (Ref. 12), these
trajectories normally do not guarantee optimality and lack
flexibility.

In contrast to the conventional guidance methods, a re-
cent research presented a new trajectory generation method
for time-optimal helicopter shipboard landing (Ref. 13). This
approach formulates an optimization problem based on a dif-
ferential flat model of the simplified helicopter dynamics. Due
to the computational efficiency of the formulation, the tra-
jectory generation method is able to provide precise time-
optimal reference trajectories with comparatively low compu-
tational cost. However, the viability of this method still relies
on solving a nonlinear programming (NLP) problem in real-
time, whose convergence is significantly influenced by both
the problem size and the initial guess of the solution. This
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hinders the generation of the real-time solution of the refer-
ence trajectory, which is critical for landing in the dynamically
changing environments. As a result, this paper aims to trans-
form the original optimization problem presented in (Ref. 13)
into a computationally efficient one by applying trajectory pa-
rameterization techniques. The feasibility of such a scheme
comes from the differentially flat nature of the original prob-
lem, as only a small subset of the optimization variables needs
to be parameterized independently. Ultimately, this compu-
tational efficiency in solving the trajectory generation prob-
lem empowers the guidance system to work in an MPC-like
framework and provide real-time reference trajectory genera-
tion during shipboard landing.

HELICOPTER SHIPBOARD LANDING
Problem Statement and Scope

Fig.1 illustrates the autonomous landing problem in the typ-
ical GNC framework, where the navigation subsystem mea-
sures and estimates the states of both the helicopter and the
ship for a given period of time; the guidance subsystem then
plans for the desired input and reference trajectories that lead
to the final touchdown on the basis of these navigation in-
formation; and the control subsystem finally executes these
guidance commands by a low-level feedback control scheme.
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Fig. 1: Overall control architecture for helicopter ship-
board landing.

As can be seen in Fig.1, the stochastic nature of the ship
motion not only results in a state estimation problem, but also
induces disturbances on the helicopter dynamic behavior be-
cause of helicopter-ship interaction. Hence, the accuracy of
the navigation and the robustness of the control are both nec-
essary requirements for a successful landing. Nonetheless, for
the purposes of this paper we assume that the navigation infor-
mation is accurate throughout the flight, and the controller is
effective in regulating the closed-loop dynamics and rejecting
the disturbance.

The primary investigation in this paper is on the develop-
ment of the path planning algorithms for the guidance sub-
system for time-optimal landing. Since the ship motion can-
not be predicted far into the future, the guidance subsystem
must achieve real-time (re-)generation of the reference trajec-
tory based on updates of the ship and helicopter states, which
eventually enables the safe and time-optimal landing under
the stringent constraints in a dynamic environment.

Simplified Helicopter Dynamics

Following the work presented in (Ref. 13), the inner-loop
shown in the red dash-line box of Fig.1, formed by the non-
linear helicopter dynamics, the navigation and control subsys-
tems, can be described as a simplified nonlinear model:

ṗ = f(p(t),v(t)) (1)

where the planned state p = [X ,Y,Z,φ ,θ ,ψ, Ẋ ,Ẏ , Ż, φ̇ , θ̇ , ψ̇]T

consists of the helicopter position (north, east, down) in the
inertial frame, attitude (roll, pitch, yaw) and their first order
derivatives; the virtual input v = [v1,v2,v3,v4]

T . Specifically,
the dynamics in Eq.(1) are determined by:

Ẍ =−g

(
tan(θ − θ̄)cosψ +

tan(φ − φ̄)

cos(θ − θ̄)
sinψ

)

Ÿ =−g

(
tan(θ − θ̄)sinψ−

tan(φ − φ̄)

cos(θ − θ̄)
cosψ

)
Z̈ =−v3
φ̈ = v1
θ̈ = v2
ψ̈ = v4

(2)

where g is the gravitational acceleration; φ̄ and θ̄ are trim
value for roll and pitch angles at given airspeed. Essentially,
the virtual input v planned by the guidance subsystem directly
generates the accelerations of heaving and rotational motion;
the change of the helicopter attitude subsequently tilts the
thrust and creates the acceleration in the horizontal plane.

Ship Motion

As far as the helicopter shipboard landing problem is con-
cerned, the kinematic information of the ship state required
by the guidance subsystem is included in:

xD =
[
XD,YD,ZD,φD,θD,ψD, ẊD,ẎD, ŻD, φ̇D, θ̇D, ψ̇D

]T (3)

While the high-fidelity ship motion data can be directly
extracted from the Systematic Characterization of the Naval
Environment (SCONE) database (Ref. 14), the guidance sub-
system demands the analytic expression of the ship motion, so
that the trajectory optimization problem can be solved using
gradient descent based method. For this purpose, the time-
varying ship motion for a given time period is approximated
by explicit sinusoidal functions of the form:

ˆ(·)(t) = ¯(·)+∑
k

A(·),k sin(kω(·)t +φ(·),k) (4)

where ¯(·) is the time-average, ω(·) is the frequency, A(·),k
and φ(·),k are the amplitude and phase lag related to the kth

harmonic, and (·) denotes the elements in xD excluding XD,
(i.e. ship position in surge (forward) direction), as the mean
forward velocity ¯̇XD of the ship is non-trivial. Nonetheless,
the analytic expression X̂D(t) can be obtained by integrating
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ˆ̇XD(t). Overall, this makes the approximated ship state being
x̂D = [X̂D,ŶD, ẐD, φ̂D, θ̂D, ψ̂D,

ˆ̇XD,
ˆ̇YD,

ˆ̇ZD,
ˆ̇
φD,

ˆ̇
θD, ˆ̇ψD]

T .

In this work, the ship motion is assumed to be always
known. Therefore, the information in Eq.(4) is accessible to
the outer-loop path planner at arbitrary flight time.

FORMULATION OF THE TIME-OPTIMAL
TRAJECTORY OPTIMIZATION PROBLEM

General Form of the Trajectory Optimization Problem

With the simplified helicopter dynamics and ship motion de-
fined, a general form of time-optimal trajectory optimization
problem can be formulated as:

P1: argmin
t∗f ,p∗(t),v∗(t)

J =
∫ t f

t0
1dt (5a)

s.t. ṗ = f(p,v) (5b)
p(t0) = K0(p0) (5c)
p(t f ) = K f (x̂D(t f )) (5d)
L(p(t),v(t))≤ 0 (5e)

where Eq.(5a) represents the minimization of total flight time
t f − t0 through the optimal state p∗(t) and input v∗(t); Eq.(5b)
constitute the dynamic constraints given by the simplified he-
licopter dynamics in Eq.(1); Eq.(5c,5d) are the initial and ter-
minal boundary constraints respectively; Eq.(5e) contains the
path constraints, which encompass all necessary restrictions
on state and input variables during the flight. The concrete
form of K0, K f and L will be discussed in a later section.

Reformulation of the Problem via Differential Flatness

P1 is an infinite-dimensional nonlinear optimization problem,
finding the solution for which can be quite expensive, if not
impractical. In particular, the nonlinear dynamic constraints
can add enormous computational cost to the solving process.
Hence, it is preferable to reformulate Problem 1 into an equiv-
alent but more computationally efficient form. In (Ref. 13), it
was shown that the system represented in Eq.(1) is differential
flat (Ref. 13), with the flat output being:

o =
[
X ,Y,Z,ψ

]T (6)

By defining the new state q = [X , Ẋ , Ẍ ,X (3),Y,Ẏ ,Ÿ ,Y (3),

Z, Ż,ψ, ψ̇]T and the new input w = [w1,w2,w3,w4]
T =

[X (4),Y (4), Z̈, ψ̈]T , which belong to the set {o, ȯ, · · · ,o( j)}, the
smooth functions Φp and Φv can be determined, so that:

p = Φp(q)
v = Φv(q,w)

(7)

which map q and w to the original planned state p and virtual
input v.

Note that the only non-identity functions in Φp and Φv are
those which map to the roll and pitch motions, namely Φφ ,
Φθ , Φ

φ̇
, Φ

θ̇
, Φ

φ̈
and Φ

θ̈
. Specifically, we have:

φ = Φφ (Ẍ ,Ÿ ,ψ)

= arctan(
− Ẍ sinψ + Ÿ cosψ√

g2 +(Ẍ cosψ + Ÿ sinψ)2
)+ φ̄

θ = Φθ (Ẍ ,Ÿ ,ψ)

=−arctan(
Ẍ
g

cosψ +
Ÿ
g

sinψ)+ θ̄

(8)

Subsequently, by differentiating Eq.(8) once and twice re-
spectively, we have:

φ̇ = Φ
φ̇
(Ẍ ,X (3),Ÿ ,Y (3),ψ, ψ̇)

θ̇ = Φ
θ̇
(Ẍ ,X (3),Ÿ ,Y (3),ψ, ψ̇)

φ̈ = Φ
φ̈
(Ẍ ,X (3),X (4),Ÿ ,Y (3),Y (4),ψ, ψ̇, ψ̈)

θ̈ = Φ
θ̈
(Ẍ ,X (3),X (4),Ÿ ,Y (3),Y (4),ψ, ψ̇, ψ̈)

(9)

Further, the dynamics governing the evolution of q and w
take the form:

q̇(t) = Fq(t)+Gw(t) (10)

which essentially consists only of a bank of pure integrators.

Consequently, with the mapping in Eq.(7) and the dynam-
ics in Eq.(8) determined, Problem 1 can be reformulated into
an equivalent form:

P2: argmin
t∗f ,q∗(t),w∗(t)

J =
∫ t f

t0
1dt (11a)

s.t. q̇ = Fq+Gw (11b)
Φp(q(t0)) = K0(p0) (11c)
Φp(q(t f )) = K f (xD(t f )) (11d)
L(Φp(q),Φv(q,w))≤ 0 (11e)

Note that the original nonlinear dynamic constraint in the P1 is
replaced by a linear counterpart in P2, while the nonlinearity
is transferred into the algebraic boundary and path constraints.
Since the algebraic constraints are generally easier to handle
in the optimization process, the reformulated P2 has better
computational performance than the original P1.

Discretization of the Problem

In (Ref. 13), problem P2 is discretized into a finite-
dimensional nonlinear programming (NLP) problem in order
to circumvent solving the infinite-dimensional problem and
achieve numerical tractability. In practice, the time domain
from t0 to t f is divided into “N− 1” equal intervals, making
the time step:

ts =
t f − t0
N−1

(12)

where the node number N is fixed in the optimization pro-
cess to avoid integer programming problem, and ts essentially
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becomes the optimization variable. Accordingly, the continu-
ous dynamics in Eq.(10) can be transformed into its discrete
counterpart:

qd(k+1) = Fdqd(k)+Gdwd(k) (13)

where qd(k) and wd(k) are the discrete state and input variable
at each node k ∈ [1,N]; and the matrices are computed with:

Fd(ts) = eFts , Gd(ts) =
∫ ts

0
eFτ G dτ (14)

by using the state transition matrix of F and assuming zero-
order hold of the input signal wd(k) over each time interval.

Consequently the discretized problem takes the form:

P2a: argmin
t∗s ,q∗d(k),w

∗
d(k)

k∈[1,N]

J = (N−1)∗ ts (15a)

s.t. qd(k+1) = Fdqd(k)+Gdwd(k) (15b)
Φp(qd(1)) = K0(p0) (15c)
Φp(qd(N)) = K f (xD(t f )) (15d)
L(Φp(qd(k)),Φv(qd(k),wd(k))≤ 0 (15e)

Being finite dimensional, P2a takes the form of the nonlin-
ear programming problem and can be solved by interior-point
(IpOpt) methods using numerical optimization software pack-
ages such as CasADi.

While the local optimum of P2a can be computed easily by
using the numerical optimization toolbox, this algorithm still
has two disadvantages:

1) The minimization of flight time in P2a is effective only
when the node number N in Eq.(12) is relatively large, as it al-
lows the input wd(k) to switch frequently during the flight and
hence provides adequate degree of freedom to shape the tra-
jectory. However, with the trajectory evenly discretized across
the time domain, the input variables at most of the nodes re-
main the same, as the path constraints are active and no ex-
cessive maneuver is required. Therefore, unnecessary compu-
tational cost is spent on solving for the information of these
trivial nodes through Eq.(13).

2) The solution to P2a only contains the information of op-
timal state q∗d(k) and w∗d(k) at the finite N nodes. In the prac-
tical implementation, for any flight time t ∈ ((k−1)t∗s ,kt∗s )
that falls between the kth and (k+ 1)th node, the actual com-
manded state qc(t) are typically obtained by linearly schedul-
ing the discrete optimal trajectory:

qc(t) = q∗d(k)+
t− (k−1)t∗s

t∗s
(q∗d(k+1)−q∗d(k)) (16)

However, with the commanded input being wc(t) =
w∗d(k), t ∈ [(k− 1)t∗s ,kt∗s ], the exact state q(t) that satisfy the
original continuous dynamics in Eq.(10) should be calculated
by:

q(t) = eF(t−(k−1)t∗s )q∗d(k)+
∫ t

(k−1)ts
eF(t−τ) Gw∗d(k)dτ (17)

Since the magnitude of ||qc(t)−q(t)|| increases as the time
step ts becomes larger (i.e. node number N becomes smaller),
the size of node number N needs to be large enough to bound
these deviations, so that the implemented reference trajectory
does not have significant discrepancy from the original de-
signed trajectory. On the other hand, although one can ob-
tain the commanded state qc(t) by directly using Eq.(17), the
computed command could then violate the path constraints as
Eq.(15e) is only enforced at the N discrete nodes and there
is no guarantee for qc(t) to lie within the bounds in-between
these sample points.

REFORMULATION OF THE TRAJECTORY
OPTIMIZATION PROBLEM USING

PARAMETERIZATION

Parameterization of the Trajectory

From the discussion above, we know the feasibility of the op-
timal solution to P2a as a time-optimal trajectory greatly de-
pends on the selection of the discrete node number N. How-
ever, the increase in N leads to a larger problem size and
invokes considerable computational cost, which adverse the
real-time generation of the time-optimal trajectory.

On the other hand, parameterization of the solution using a
set of basis functions, rather than discretization, is an alterna-
tive way for transcribing P2 into a numerically more tractable
formulation. The idea behind such an approach is to approxi-
mate the optimal state q∗(t) and input w∗(t) in the optimiza-
tion problem P2 by a set of specific basis functions parame-
terized by unknown coefficients, in the form:

(·)(t) =
n

∑
k=0

a(·)kϕ(·)k(t) (18)

where (·) denotes the elements in the state vector q and input
vector w; ϕ

(·)
k (t) represents the kth basis function, with a(·)k

being the corresponding coefficients.

For a general optimization problem, all the elements in the
state and input vectors need to be parameterized respectively
by Eq.(18), in order to approximate the optimal solution. As
for reformulating problem P2, one only needs to form the
parametric functions of flat output o = [X ,Y,Z,ψ]T , while the
higher order time derivatives in q and w get automatically de-
termined. In this paper, the variables in o are parameterized
with M piece-wise polynomial functions (splines):

(·)(t) =
n(·)

∑
k=0

a(·)k,i(t− ti)k,∀t ∈ [ti, ti+1], i ∈ [0,M−1] (19)

where ti marks both the end of the ith spline and the beginning
of the (i+ 1)th spline, n(·) determine the highest order of the
corresponding variable. To preserve the continuity of the el-
ements in state vector q, nX = nY = 4 and nZ = nψ = 2 are
chosen for the rest of this paper.
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Once the parametric functions in Eq.(19) are defined, each
independent flat output variable, together with its time deriva-
tives, can be written in the compact form:

(((•)))(t) = ΦΦΦ(·)(t− ti)a(·),i,∀t ∈ [ti, ti+1], i ∈ [0,M−1] (20)

where (((•))) represents X, Y, Z and ΨΨΨ, which are vectors con-
taining the related flat output variable and the time deriva-

tives in the state q, i.e. (((•))) =

[
(·),

d
dt
(·), · · · ,

d(n(·)−1)

dt
(·)

]T

;

a(·),i = [a(·)0,i,a(·)1,i, · · · ,a(·)n(·),i]
T represents the coefficient

vector; and the matrix ΦΦΦ(·)(t− ti) consists of the basis func-
tions and their derivatives:

1 t− ti · · · (t− ti)
n(·)−1 (t− ti)

n(·)

0 1 · · · (n(·)−1)(t− ti)
n(·)−2 n(·)(t− ti)

n(·)−1

...
...

. . .
...

...
0 0 · · · (n(·)−1)! n(·)!(t− ti)


︸ ︷︷ ︸

ΦΦΦ(·)(t−ti)

(21)

Altogether, the state vector q can be represented by:

q(t) = ΦΦΦ(t− ti)ai,∀t ∈ [ti, ti+1], i ∈ [0,M−1] (22)

where ai = [aX ,i,aY,i,aZ,i,aψ,i]
T is the concatenated coeffi-

cient vector, and the matrix ΦΦΦ(t− ti) takes the form:
ΦΦΦX (t− ti) 0 0 0

0 ΦΦΦY (t− ti) 0 0
0 0 ΦΦΦZ(t− ti) 0
0 0 0 ΦΦΦψ(t− ti)


︸ ︷︷ ︸

ΦΦΦ(t−ti)

(23)

On the other hand, due to the choice of the highest order
n(·), the input vector remains constant for each segment:

w(t) =


nX !aXnX ,i
nY !aY nY ,i
nZ!aZnZ ,i
nψ !aψnψ ,i

 ,∀t ∈ [ti, ti+1], i ∈ [0,M−1] (24)

Conditions for Continuity

While Eq.(22) comprises piece-wise class Cn(·)−1 functions of
corresponding state variables within each spline, additional
conditions need to be satisfied at the junctions of two neigh-
bouring splines in order to guarantee the global continuity of
the trajectory. Hence, the right endpoint of the ith spline and
the left endpoint of the (i+1)th spline should be equal :

q(ti) = ΦΦΦ(ti− ti−1)ai−1 = ΦΦΦ(0)ai,∀i ∈ [1,M−1] (25)

Since the last column of ΦΦΦ(0) is trivial in Eq.(25), the first
n(·)−1 coefficients a(·),i of each spline are actually determined
by the state q(ti) at the corresponding left endpoint. The high-
est order coefficients a(·)n(·),i can be chosen freely.

Further, we also have q(t0) = ΦΦΦ(0)a0 from the initial con-
dition of the trajectory. Thus, the endpoints of each spline can
be propagated in a recursive way:

q(ti) = Fp(∆ti)q(ti−1)+Gp(∆ti)w(ti−1),∀i ∈ [1,M] (26)

where ∆ti = ti− ti−1 denotes the length of the ith spline. The
matrices in Eq.(26) can be written as:

Fp =


FX p 0 0 0

0 FY p 0 0
0 0 FZp 0
0 0 0 Fψ p

 ,Gp =


GX p 0 0 0

0 GY p 0 0
0 0 GZp 0
0 0 0 Gψ p

 (27)

where the blocks take the form:

F(·)p(∆ti) =



1 ∆ti · · ·
∆t

n(·)−1
i

(n(·)−1)!

0 1 · · ·
∆t

n(·)−2
i

(n(·)−2)!
...

...
. . .

...
0 0 · · · 1


G(·)p(∆ti) =

[
∆t

n(·)
i

(n(·))!
∆t

n(·)−1
i

(n(·)−1)!
· · · ∆ti

]T

(28)

With the endpoint values q(ti) determined by Eq.(26), they
can replace the coefficient vectors ai in Eq.(22) and act as the
coefficients of the corresponding spline. To parameterize the
trajectory of state q(t) at time t ∈ [ti, ti+1]⊂ [t0, t f ], we have:

q(t) = Fp(t− ti)q(ti)+Gp(t− ti)w(ti) (29)

Note that the left endpoint input w(ti) in Eq.(29) remains
constant through the entire segment t ∈ [ti, ti+1] and can be
adjusted to shape the related spline.

Refomulation of the Problem via Parameterization

With the parametric functions of the state q(t) and the input
w(t) defined, the optimization problem P2 can be reformu-
lated in the following form:

P2b: argmin
∆t∗i ,q

∗(ti),w∗(ti−1)
i∈[1,M]

J = ∑
i

∆ti (30a)

s.t. q(ti) = Fp(∆ti)q(ti−1) (30b)
+Gp(∆ti)w(ti−1)

q(t) = Fp(t− ti−1)q(ti−1) (30c)
+Gp(t− ti−1)w(ti−1), t ∈ [ti−1, ti]

w(t) = w(ti−1), t ∈ [ti−1, ti] (30d)
Φp(q(t0)) = K0(p0) (30e)
Φp(q(tM)) = K f (xD(t f )) (30f)
L(Φp(q(t)),Φv(q(t),w(t))≤ 0 (30g)

As can be seen, P2b seeks to optimize the total flight
time by designing the optimal length ∆t∗i , optimal coefficients
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q∗(ti) and w∗(ti−1) (i.e. the endpoint state and input values) of
the M splines. The solution can then be used to parameterize
the optimal trajectory.

The parameterization problem P2b differs from the dis-
cretization problem P2a in the following two aspects:

1) The choice of each spline length ∆ti is flexible. Hence,
the trajectory only transitions from one spline to another when
the maneuver is required, which avoids placement of numer-
ous nodes in the discretization method.

2) For the implementation of the optimal trajectory, the
commanded state qc(t) and input wc(t) can be directly param-
eterized by using the optimal coefficients q∗(ti) and w∗(ti−1).
Since the parametric functions are Cn(·)−1 smooth and satisfy
the dynamics strictly, there is no deviation of the commanded
state from the actual dynamics, unlike the discretization ap-
proach in P2a.

Because of these two factors, we can now solve for the
time-optimal trajectory with fewer number of splines as com-
pared to the discrete nodes used in P2a (i.e. M� N). Conse-
quently, the computational efficiency of problem P2b is higher
than problem P2a.

As far as the numerical implementation of P2b is con-
cerned, Eq.(30a,30b,30e,30f), which are already in discretized
form, can be programmed into the numerical solver in a
straightforward manner. Since the complete form of the
boundary constraints Eq.(30e,30f) resembles its counterpart
in P2a and has been discussed fully in (Ref. 13) already, they
will not be reviewed in this paper.

On the other hand, Eq.(30g) enforces the path constraint
on the continuous functions of state q(t) in Eq.(30c) and input
w(t) in Eq.(30d), which is numerically intensive. Hence, one
needs to conduct some adjustments on Eq.(30g) to improve
numerical tractability.

To enforce the path constraint Eq.(30g) in the numerical
solver, we sample the state q(t) and input w(t) at k time points
with Eq.(30c,30d), and then impose the constraint Eq.(30g) on
each of these points. Clearly, this will greatly increase the size
of the problem P2b and eliminate the advantage of P2b over
P2a, which is not preferable.

On the other hand, it is also possible to satisfy path con-
straint Eq.(30g) by bounding the extremum of each spline,
which can be derived analytically from the endpoint values
q(ti) and w(ti−1) alone. Without introducing any extra sample
time points, such method largely preserves the computational
efficiency of problem P2b. We discuss this in detail in the next
subsection.

Adaptation of the Path Constraint

In order to adapt the path constraint into a numerically man-
ageable form, we first list the specific inequalities in Eq.(30g).

To prevent excessive high slew rates of the state variables
during the flight, the horizontal velocity, vertical velocity and

the yaw rate of the helicopter are constrained by:√
Ẋ2(t)+ Ẏ 2(t)≤ vhmax, ∀t ∈ [t0, t f ] (31a)

|Ż(t)| ≤ vzmax,∀t ∈ [t0, t f ] (31b)
|ψ̇(t)| ≤ vψ max,∀t ∈ [t0, t f ] (31c)

In order to limit the aggressiveness of the maneuvers, the
horizontal, vertical and yaw accelerations are respectively
constrained by:√

Ẍ2(t)+ Ÿ 2(t)≤ ahmax,∀t ∈ [t0, t f ] (32a)

|Z̈(t)| ≤ azmax,∀t ∈ [t0, t f ] (32b)
|ψ̈(t)| ≤ aψ max,∀t ∈ [t0, t f ] (32c)

Finally, the roll and pitch angles are also constrained to
limit the fuselage attitude:

|φ(t)|= |Φφ (Ẍ(t),Ÿ (t),ψ(t))| ≤ φmax,∀t ∈ [t0, t f ] (33a)
|θ(t)|= |Φθ (Ẍ(t),Ÿ (t),ψ(t))| ≤ θmax,∀t ∈ [t0, t f ] (33b)

where the functions Φφ and Φθ are determined from Eq.(8).

Ideally, the rate and acceleration of roll and pitch angles
shown in Eq.(9) should also be constrained directly. However,
due to the complexity of the transformations, enforcing these
constraints becomes computationally expensive. On the other
hand, there is strong correlation between the jerk terms X (3),
Y (3) and roll, pitch rates φ̇ , θ̇ , as well as the snap terms X (4),
Y (4) and roll, pitch rates φ̈ , θ̈ . Hence, the roll/pitch rates and
accelerations are bounded by constraining the norm of the jerk
and snap:√(

X (3)(t)
)2

+
(
Y (3)(t)

)2 ≤ jhmax,∀t ∈ [t0, t f ] (34a)√(
X (4)(t)

)2
+
(
Y (4)(t)

)2 ≤ shmax,∀t ∈ [t0, t f ] (34b)

Aside from the above common constraints, scenario spe-
cific constraints must also be enforced for the different flight
phases. The airspeed is comparatively high during approach,
so that the side-slip angle is constrained by:

β (t) = ψ(t)− arctan2(Ẏ (t), Ẋ(t)) = 0,∀t ∈ [t0, t f ] (35)

Note that Eq.(35) is essentially a equality constraint, which
indicates the yaw angle of approach phase can be directly pa-
rameterized using the parametric functions of the north and
east velocity Ẋ(t), Ẏ (t). Accordingly, for the approach phase,
we also have:

ψ̇(t) = Φψ̇(Ẋ , Ẍ ,Ẏ ,Ÿ ) (36a)

ψ̈(t) = Φψ̈(Ẋ , Ẍ ,X (3),Ẏ ,Ÿ ,Y (3)) (36b)

Hence, instead of being constrained by Eq.(31c) and
Eq.(32c), the yaw rate and acceleration in the approach phase
gets bounded by constraining the horizontal acceleration and
jerk in Eq.(32a) and Eq.(34a).
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On the other hand, to improve the landing safety, additional
constraints are enforced on landing trajectory. Anti-collision
constraint is implemented by:

Z(t)≤ ẐD(t)+ZTOL,∀t ∈ [t0, t f ] (37)

where ẐD(t) is the estimated deck height and ZTOL is the land-
ing safety tolerance accounting for helicopter size.

With the inequalities in Eq.(31-34) and Eq.(37) defined, we
can then substitute the time t with the M+1 time points ti, i ∈
[0,M]. By doing so, we actually enforce the path constraint
on the endpoints of each spline and thus put the skeleton of
the trajectory within the bounds.

Recall that the highest orders of the splines used for the flat
output variables are chosen as nX = nY = 4 and nZ = nψ = 2.
Hence, within each spline, this leads to the third order deriva-
tives of X(t) and Y (t) (jerks) being linear functions of time,
as well as the fourth order derivatives (snaps) being constant
functions. Similarly, the first and second order derivative (ve-
locities and accelerations) of Z(t) and ψ(t) are linear func-
tions of time and constant functions respectively.

Since the extrema of piece-wise linear functions and con-
stant functions locate at the endpoints, one can bound these
functions by solely constraining the endpoint values. In
other word, the inequalities in Eq.(31b,31c), Eq.(32b,32c),
Eq.(34a,34b) get satisfied automatically for all time t ∈ [t0, t f ],
as long as they are enforced at the endpoints ti, i∈ [0,M] of the
M spline functions.

On the other hand, the accelerations Ẍ(t), Ÿ (t) and the al-
titude−Z(t) are quadratic functions of time, while the veloci-
ties Ẋ(t) and Ẏ (t) are cubic. Therefore, imposing the inequal-
ities in Eq.(31a), Eq.(32a), Eq.(33a,33b) and Eq.(37) at the
endpoints ti, i ∈ [0,M] alone is not sufficient for their satis-
faction across the entire time domain [t0, t f ]. This situation is
illustrated in Fig.2.

𝑝(𝑡)

𝑝(𝑡)

𝑡𝑖−1 𝑡𝑖 𝑡

𝑝

𝑜

𝑝max

𝑡𝑖+1

𝛿𝑝max

Fig. 2: Illustration of the boundness of the piece-wise
quadratic function.

As shown in Fig.2, p(t) is a generic piece-wise quadratic
function. It is obvious that constraining p(t) at the endpoints
ti only guarantees the bounds of the related chord line p̃(t)
within the limit pmax, while p(t) itself may violate the bound.

In addition, for the ith spline of p(t) inside [ti−1, ti], we have:

p(t) = p(ti−1)+ v(ti−1)t +
1
2

a(ti−1)t2

p̃(t) = p(ti−1)+

(
v(ti−1)+

1
2
a(ti−1)∆ti

)
t

(38)

where v(t) and a(t) are the first and second order derivatives
of p(t). Since the maximal deviation of the ith quadratic func-
tion from its chord line is:

max |p(t)− p̃(t)|

= max |
1
2

a(ti−1)∆tit−
1
2
a(ti−1)t2|

=
1
8

a(ti−1)∆t2
i

(39)

By enforcing the above deviation to be:

1
8
a(ti−1)∆t2

i ≤ δ pmax,∀i = [1,M] (40)

we can restrict the piece-wise quadratic function inside the
tube with width δ pmax, which is represented by the red dashed
lines in Fig.2. Thus, the violation of the bounds can be con-
trolled within a reasonable scope.

For inequality Eq.(32a), we can bound the deviation of
Ẍ(t) and Ÿ (t) by substituting a(t) in Eq.(40) with X (4) and
Y (4) respectively.In addition, assuming the tolerable violation
of horizontal acceleration constraint is δahmax, the tube width

δ pmax can be selected to be

√
2

2
δahmax for both Ẍ(t) and Ÿ (t),

which consequently gives:

|δah(t)| =

∣∣∣∣∣∣∣
√(

˜̈X(t)+δ Ẍ(t)
)2

+
(

˜̈Y (t)+δŸ (t)
)2

−
√

˜̈X2(t)+ ˜̈Y 2(t)

∣∣∣∣∣∣∣
≤
√

δ Ẍ2(t)+δŸ 2(t)
≤
√

2max(δ Ẍ2(t),δŸ 2(t)) = δahmax

(41)

Once the maximal violation of horizontal acceleration con-
straint is regulated by Eq.(41), the maximal violations of roll
and pitch angle constraints are approximately given by:

max |δφ(t)|= max |δθ(t)| ≈
gδahmax

g2 +ahmax
(42)

which virtually assures the fulfillment of the inequalities in
Eq.(33).

Similarly, concerning the implementation of Eq.(37) dur-
ing landing, the maximal deviation of the altitude −Z(t) from
the corresponding chords can also be bounded by replacing
the corresponding variables in Eq.(40). The upper bound of
such deviation is selected according to safety factors.

Remark: Although one can use the same strategy discussed
above to regulate the maximum violation of the horizontal ve-
locity constraint in Eq.(31a), the cubic form of the velocity
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Ẋ(t) and Ẏ (t) leads to a more involved calculation since the
deviation of each spline has two extrema that are in a more
complex form. At the same time, the constraint on the hori-
zontal velocity is typically less strict than the one on the ac-
celeration in the shipboard landing problem, as the velocity
has a general tendency to decrease (to match that of the deck).
Hence, for simplicity, velocity constraints Eq.(31a) are only
enforced at the endpoints of each spline in this paper.

In addition to execution of the constraint Eq.(40) on the
maximal deviation of Ẍ(t), Ÿ (t) and Z(t), the flexibility of
each spline length is also constrained by:∣∣∣∣∣∣∣∣

M∆ti−
M
∑

i=1
∆ti

M
∑

i=1
∆ti

∣∣∣∣∣∣∣∣≤ Fmax,∀i ∈ [1,M] (43)

Eq.(43) actually limits the difference of each individual
spline length from the average one, which avoids the appli-
cation of extreme long and short splines that impedes the con-
vergence of the optimization problem.

Complete Optimization Problem Formulation

Consequently, with the adaptation of the path constraint in
Eq.(30g) discussed in the previous subsection, problem P2b
can be reformulated as:

P2b† : argmin
∆t∗i ,q

∗(ti),w∗(ti−1)
i∈[1,M]

J = ∑
i

∆ti (44a)

s.t. q(ti) = Fp(∆ti)q(ti−1) (44b)
+Gp(∆ti)w(ti−1)

Φp(q(t0)) = K0(p0) (44c)
Φp(q(tM)) = K f (xD(t f )) (44d)

L†(Φp(q(ti)),Φv(q(ti),w(ti−1))≤ 0
(44e)

where the adapted path constraint L† includes the inequalities
in Eq.(40) and Eq.(43) in addition to the inequalities that are
already contained in the original path constraint L.

Since the optimization problem P2b† is in discrete form,
which only consists of algebraic constraints that are executed
at the M + 1 endpoints of the splines, the solution to it (i.e
time-optimal trajectory) can be obtained using a numerical
optimization solver.

SIMULATION RESULTS

In this section, we present the time-optimal trajectories gen-
erated by the proposed algorithm. The flight plan is separated
into a approach phase and a landing phase, which will be dis-
cussed in the following two subsections, respectively.

Approach Phase

Three cases of approach scenarios have been used for testing
the capability of the proposed algorithm. In these cases, the
ship travels at a forward speed of 20 knots (10.289 m/s) with
different initial positions and heading angles relative to the
helicopter, which are listed in Table 1. On the other hand, the
helicopter starts at (0m,0m,-70m) in the NED frame with a
trim condition at 80 knots (41.156 m/s) in all three cases.

Table 1: Initial ship states in different cases of the ap-
proach phase.

case # North position East position Heading angle
(m) (m) (deg)

1 500.00 0 0
2 353.55 353.55 0
3 353.55 353.55 30

For all the three cases in Table 1, problem P2b† is solved
for the time-optimal trajectories, with M = 15 splines used
for parameterization. On the other hand, in order to examine
the feasibility and optimality of the above trajectories, they
are compared with the corresponding benchmark trajectories,
which are solved from problem P2a, with N = 151 discrete
nodes selected.
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Fig. 3: Ground tracks of the approach trajectories.

Fig.3 shows the ground tracks of the time-optimal ap-
proach trajectories solved from P2b† in all three cases. As can
be seen, these trajectories resemble their benchmarks well,
showing the good approximations to the exact optimal solu-
tions achieved from trajectory parameterization.
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Fig. 4: Altitude and airspeed versus range profiles during
approach.

Fig.4 shows the altitude and airspeed profiles of the param-
eterized trajectories. Similar to the ground tracks, these pro-
files, shaped by the parametric splines, match the benchmarks
closely.
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Fig. 5: Helicopter attitude time histories during approach.

Fig.5 shows the corresponding helicopter attitudes time-
trace during the approach. Overall, the three Euler angle com-
mands are also well-approximated by the parameterization.
There are no notable violations of roll and pitch angle con-
straints, proving the effectiveness of Eq.(40). On the other
hand, small mismatches between the parameterized roll/pitch
angles and their benchmarks can be observed in some parts
of the trajectories. This is mainly due to the fewer decision
variables in the parameterization method compared to the dis-
cretization method.

Next, the influence of different selections of the maximal
tolerable horizontal acceleration violation δahmax, the spline
length flexibility Fmax and the number of splines M is investi-
gated. For brevity, only the simulation results from case 3 in
Table 1 are shown.

Selection of δahmax: Fig.6 and Fig.7 show the effect of
different choices of the maximal tolerable horizontal acceler-
ation violation, when the flexibility Fmax = 50% and the num-
ber of splines M = 15.

As shown in Fig.6, with the maximal tolerable violation

0 5 10 15 20 25 30 35

Time(s)

0

0.5

1

1.5

2

2.5

3

H
or

iz
on

ta
l A

cc
el

er
at

io
n(

m
/s

2 )

benchmark
unconstrained
a

hmax
=0.28

a
hmax

=0.14

Fig. 6: Helicopter horizontal acceleration with different
maximal tolerable horizontal acceleration violation.

δahmax decreasing, the peak horizontal acceleration of the tra-
jectories contract towards the upper bound of the horizontal
acceleration ahmax = 2.5 m/s2. Accordingly, the flight time
increases as the extra acceleration obtained from the violation
of the constraints gets restrained.
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Fig. 7: Helicopter roll and pitch angles with different max-
imal tolerable horizontal acceleration violation.

Fig.7 shows the similarities between the maximal viola-
tions of roll/pitch angle constraints and horizontal accelera-
tion, which is stated in Eq.(42). As can be seen, all notable
peaks of the roll and pitch angle profiles are eliminated after
δahmax is limited under 0.14 m/s2, which further results in
smoother trajectories of roll and pitch angles.

Selection of Fmax: Fig.8 and Fig.9 show the effect of dif-
ferent choices of spline length flexibility, when the maximal
horizontal acceleration violation δahmax = 0.14 m/s2 and the
number of splines M = 15.

As shown in Fig.8, by allowing flexibility of time duration
for each spline segment, the algorithm is able to determine
better timings for switching the control input by transition-
ing from one spline to another. This improved distribution of
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Fig. 8: Helicopter horizontal acceleration with different
amounts of flexibility allowed for the spline time dura-
tions.

necessary maneuvers leads to a horizontal acceleration pro-
file that fits the benchmark more closely, which relates to the
time-optimality of the approach trajectory.

0 5 10 15 20 25 30 35
-10

0

10

R
ol

l(d
eg

)

0 5 10 15 20 25 30 35
Time(s)

-10

0

10

P
itc

h(
de

g)

0

12.5

25

37.5

50

F
le

xi
bi

lit
y(

%
)

parameterized
trajectories
benchmark

Fig. 9: Helicopter roll and pitch angles with different flex-
ibility of the spline length.

Fig.9 further shows the role of spline length flexibility in
shaping the trajectory. As the flexibility increases from 0%
(i.e. each spline has the same length) to 50%, the algorithm
gains more freedom in placing more splines around the key
time points where significant re-directions of roll and pitch
angles need to be parameterized with higher accuracy. Con-
trarily, in the parts where roll and/or pitch angles saturate, the
trajectory is approximate with less splines. Consequently, the
algorithm is enabled to better locate the optimal timing for
turning and decelerating the helicopter during the approach.

Selection of M: Fig.10 and Fig.11 show the effect of dif-
ferent choices of the number of splines, when the maximal
horizontal acceleration violation δahmax = 0.14 m/s2 and the
spline length flexibility Fmax = 50%.

Since the number of splines M directly determines the
number of decision variables, the corresponding solutions
have higher degrees of freedom in shaping the trajectory as
we increase M. Therefore, compared to the case in Fig.8 and
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Fig. 10: Helicopter horizontal acceleration with different
number of splines.
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Fig. 11: Helicopter roll and pitch angles with different
number of splines.

Fig.9, as M increases from 11 to 15, more intricate maneu-
vers in trajectories can be observed in Fig.10 and Fig,11. It
is interesting to note though, that the total flight time does not
significantly reduce.
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Fig. 12: Trade-off between computational time and op-
timal flight time accuracy with different levels of spline
length flexibility.

Computational Cost: The left axis in Fig.12 shows the
computational time spent on solving problem P2b† with dif-
ferent choices of spline length flexibility, while the right axis
shows the optimal flight time of the corresponding resultant
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solution. The result is obtained by solving the trajectory for
case 3 in Table 1 with number of splines M = 16, on a laptop
with Intel Core i5-6200U 2.40 GHz.

Overall, compared to the average 1.25 s cost by solving
the benchmark trajectory from problem P2a when N = 151, it
takes less than 0.3 s to solve problem P2b† for all cases shown
in Fig.12, which suggests that the proposed algorithm saves
more than 75% of the computational time. On the other hand,
by increasing the spline length flexibility from 0% to 50%, the
optimal flight time solved from problem P2b† approaches the
benchmark solution, with only an 0.5% growth in flight time.

Landing Phase

In this paper, all landing cases are assumed to initiate at 12
m above the sea level with a position hold state relative to the
deck. Ship motion characterized by dominant heave move-
ments with medium intensity from the SCONE database are
used to fit an analytical expression for the heave motion from
Eq.(4).

Similar to the work in (Ref. 13), two landing strategies are
used to generate different trajectories: the aggressive strat-
egy seeks for pure time-optimality by maximizing the vertical
acceleration and deceleration; the gentle strategy relaxes the
aggressiveness of the landing trajectory by constraining the
deck heave rate at touch down. The trajectories adopting the
above two strategies are solved from Problem P2b† respec-
tively, with both M = 2 and M = 9 splines used. Additionally,
the corresponding benchmark trajectories are also obtained by
solving Problem P2a, with N = 51 selected.
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Fig. 13: Trajectories with aggressive landing strategy.

When applying the aggressive landing strategy, the optimal
solution to problem P2 is essentially a bang-bang input of the
vertical acceleration. Hence, when selecting M > 2, problem
P2b† can always be solved for the exact optimal solution by
optimizing the switch time of the vertical acceleration. This
is shown in Fig.13.

On the other hand, the objective of the gentle landing strat-
egy is to obtain a smoother trajectory by allowing the heli-
copter to wait for a more quiescent deck motion for touch-
down. However, as can be seen in Fig.14, the trajectory still

0 1 2 3 4 5
4

6

8

10

12

A
lti

tu
de

(m
)

benchmark
M=2
M=9

0 1 2 3 4 5
Time(s)

-3

-2

-1

0

1

V
er

tic
al

 V
el

oc
ity

(m
/s

)

Fig. 14: Trajectories with gentle landing strategy.

ends up with an aggressive bang-bang pattern in the vertical
motion when M = 2, since the degree of freedom for the algo-
rithm to shape the trajectory is too limited. Nonetheless, the
trajectory solved from P2b† already approximates the bench-
mark well when M = 9, which meets the goal of relaxing the
aggressiveness of landing.

Averagely, it takes 0.03 s and 0.05 s to solve problem P2b†

for the landing trajectories when selecting M = 2 and M = 9
respectively. Therefore, compared to the average 0.25 s spent
on solving for problem P2a when N = 51, the proposed algo-
rithm using trajectory parameterization technique has a sig-
nificantly higher computational efficiency.

CONCLUSIONS

In this paper, a real time path planning algorithm is proposed
for time-optimal trajectory generation in the helicopter ship-
board landing problem. The original infinite dimensional op-
timization problem is reformulated into a numerical tractable
form by parameterizing the flat outputs with piece-wise spline
functions. Compared to the discretization method applied in
a previous work, the proposed method reduces the size of the
optimization problem significantly. Additionally, an efficient
way of enforcing the path constraint is developed to restrict
key state and input variables throughout the flight. As a re-
sult, the trajectory generated by the proposed method is feasi-
ble and time-optimal, and can be solved in real-time.
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