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ABSTRACT
This paper presents a trajectory planner and a control architecture capable of guiding a quadrotor biplane tailsitter
(QRBP) through obstacle cluttered environments. The trajectory planner is formulated as an optimization problem
that uses a differentially flat, point-mass model of a QRBP that considers wake effects on the aerodynamic forces
generated during transition. Obstacle avoidance is realized as a state constraint in the optimization problem that defines
’no-flight zones’ or regions where the QRBP cannot enter based on obstacle size and safety clearance requirements.
The 6DOF control architecture is designed as a set of cascaded dynamic inversion controllers that use the aerodynamic
feedforward signals produced by the trajectory planner to complete the inversion in the outer loop. To show the
effectiveness of the obstacle avoidance path planning methodology, time-optimal trajectories are generated for two
flight missions (the hover to forward flight and vice versa) through cluttered environments. The control architecture is
validated on these two cases using a high fidelity flight dynamics simulation of a QRBP. The computational efficiency
of the trajectory planner and the tracking performance of the control architecture are then empirically validated.

INTRODUCTION

Transitioning Unmanned Aerial Systems (UAS), capable of
operating in and maneuvering between the vertical take-
off/landing (VTOL) and fixed wing flight modes, have seen
increasing interest of late (Ref. 1), (Ref. 2) due to the benefits
and advantages inherent to their design, i.e. higher maneu-
verability, reduced take-off and landing footprint, increased
endurance in hover, and larger capacity for payload delivery
than their conventional counterparts.

From a control design standpoint, the development of effec-
tive and robust guidance-navigation-control (GNC) architec-
tures for transitioning UAS for maneuvering between flight
modes (hover to forward flight and vice versa) is a well-
documented research problem. Prior literature on transition-
ing UAS (particularly for tailsitters) describe and validate el-
ements of the GNC architecture in isolation (Ref. 3), (Ref. 4)
(Ref. 5), (Ref. 6), as well as the design of the complete closed
loop architecture (Ref. 7), (Ref. 8). While several advance-
ments regarding autonomous control of transitioning UAS
have been made over the last several years, they typically
focus on flight mode transitions in obstacle-free scenarios.
However, the types of missions a typical UAS must execute
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Figure 1. CRC-20 Quad-Rotor Biplane Tailsitter (Ref. 9)
autonomously necessitate a mechanism to avoid obstacles and
perform maneuvers within cluttered environments. Thus, in-
corporating obstacle avoidance into path planning methodolo-
gies and control architectures for transitioning UAS is crucial
to their eventual real-world application.

There are several well established approaches for trajectory
planning and control for obstacle avoidance in autonomous
UAS. For example, in (Ref. 10), Mechali et. al design a
static obstacle avoidance and path planning method for a UAS
based on a rectified rapidly exploring random tree (RRT*) al-
gorithm. In (Ref. 11), Budiyanto et. al. apply a potential field
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approach to an optimal path planning algorithm of a group
of UASs, which must generate feasible paths in a bounded
region in space while considering static (stationary) obsta-
cles, as well as the other UASs as dynamic(moving) obstacles.
In (Ref. 12), Jayaweera et. al propose a 3D path planning tech-
nique for a multirotor UAV. The path planning architecture
uses an enhanced dynamic artificial potential field (ED-APF)
to track the position and velocity of a mobile ground vehi-
cle while in an obstacle-populated environment. In (Ref. 13)
and (Ref. 14), a reachibility-based control architecture is de-
signed for a unmanned ground vehicle that computes the con-
trol law as a backwards-reachable set based on the known dy-
namics of the vehicle and the projected dynamics of a moving
obstacle. This rechability-based controller is designed using
Hamilton-Jacobi-Isaacs (HJI) reachability analysis, and is de-
signed for onboard implementation.
The literature described above validates many suitable meth-
ods for the safe path planning and control of VTOL UAS fly-
ing through obstacle cluttered environments. However, many
current path planning architectures for transitioning UAS gen-
erally do not consider obstacle avoidance in their methodolo-
gies. Thus, this paper seeks to explore the path planning prob-
lem for transitioning UAS to maneuver between the VTOL
and fixed wing flight states (and vice versa) within obstacle
cluttered environments. We expand on the optimal trajectory
generation method for the quadrotor biplaine (QRBP) tailsit-
ter described in (Ref. 15), (Ref. 16), which produces both an
optimal flight path for a given flight mission and a set of pro-
jected feedforward state profiles useful for controller design.
The scope of this paper is limited to path planning and flight
control in an environment with static obstacles of known size
and location. The performance of the proposed trajectory gen-
eration approach is evaluated in terms of computational per-
formance (for real-time implementation and on-board plan-
ning), quality of trajectories obtained, and tracking perfor-
mance in a high-fidelity simulation of the Common Research
Configuration (CRC-20) QRBP (Fig. 1).

PROBLEM STATEMENT
Fig. 2 shows a visualization of the cluttered environment path
planning scenario. Consider a QRBP with state x⃗ and input
u⃗, whose motion is described by ˙⃗x = f (⃗x, u⃗). Let χ be the
feasible range of states within the state space. Further, let
p = p1 ∪ p2 ∪ . . . pn ∈ χ , prescribe the regions in the bounded
state space that must be avoided. These regions, henceforth
known as no-fly zones, represent regions of known size and
location which the QRBP must maneuver around to perform a
specific mission or a mission task element. The control prob-
lem is thus to guide the vehicle state x⃗ from the specified ini-
tial flight condition to the terminal flight condition x⃗0 ,⃗x f ∈ χ ,
respectively, such that x⃗(t) ̸∈ p. The GNC architecture for the
QRBP consists of a trajectory planner, designed to generate
the desired state trajectory x⃗∗ and feedforward signals u⃗∗ re-
quired to achieve the maneuver, and a feedback controller of
the form u⃗ = K(⃗x,⃗x∗), designed to drive x⃗ along the desired
trajectory. We assume all state feedback signals are readily
available.

Figure 2. Visualization of Optimal Path Planning with Ob-
stacle Avoidance.
6DOF QRBP Flight Dynamics Model for Simulation: The
flight dynamics model cited from (Ref. 7) is used to repre-
sent the rigid body dynamics of a typical QRBP. This model
considers gravitational, inertial, aerodynamic, and propul-
sive (thrust) forces. The standard 6DOF state representa-
tion of a rigid body is used for the vehicle, such that x⃗ =
[x y z φ θ ψ u v w p q r]T . The model also captures the
effect of rotor wake over the biplane wings (and thus the aero-
dynamic forces and moments acting on the QRBP) using mo-
mentum theory. For a detailed description of the QRBP aero-
dynamic model, we refer the interested reader to (Ref. 7). A
simulation model of the 20lb Common Reserach Configura-
tion QRBP (Fig 1) is used to validate the performance of the
control architecture.

The simulation model platform (Ref. 9) is based on the flight
dynamics model described in (Ref. 7). The flight dynamics
simulation of the CRC-20 is a full 6-DOF model consisting of
12 states and 4 control inputs. The state vector x⃗, is defined
using right handed inertial and body frames with a 321 (Roll-
Pitch-Yaw) Euler rotation sequence. To avoid gimbal lock, the
nose of the vehicle is oriented along the body y axis, changing
the notions of vehicle pitch and roll to be φ and θ , respec-
tively. The input vector u⃗ = [ΩCOLL ΩLAT R ΩLNGL ΩPEDL]
is a concatenated version of the physical control input ū =
[Ω1 Ω2 Ω3 Ω4] (the rotational speeds of each individual ro-
tor), such that the elements of u⃗ correspond to the noseward
velocity v and the attitude angles θ , φ , and ψ , respectively.

Figure 3. Control Architecture for CRC-20 QRBP.

Control Architecture Structure: Fig. 3 details the anatomy
of the control architecture for the QRBP, which consists of a
trajectory planner, an outer loop position controller, an inner
loop attitude controller, and a control allocator. The trajec-
tory planner generates the optimal flight path P∗

d , as well as
the projected aerodynamic forces L∗ (lift), D∗ (drag), flight
path angle γ∗, nominal angle of attack α∗, and effective angle
of attack α∗

e needed to achieve desired flight path transition.
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The trajectory planner considers the subset p representing the
obstacles to be avoided in its formulation. Using P∗

d as a refer-
ence, the outer loop position controller uses the aerodynamic
feedforward signals alongside inertial position error to calcu-
late the vehicle’s thrust command Tc and the desired attitude
Ψd = [φd (pitch) θd (roll) ψd (yaw)]T for position correction.
The attitude controller corrects attitude error by adjusting the
required control moments (M ≜ [L M N ]T ). The thrust
command and control moments are then allocated to obtain
the control input u⃗ = [Ω1 Ω2 Ω3 Ω4]

T .

TRAJECTORY PLANNER WITH
OBSTACLE AVOIDANCE METHODOLOGY

The methodology for trajectory planning in obstacle clut-
tered environments is an expansion of the method described
in (Ref. 16). Here, planning is cast as an optimization prob-
lem that generates the optimal target curve P∗

d , and the feed-
forward signals L∗, D∗, γ∗, α∗, α∗

e based on an optimization
metric (cost function) specified by the vehicle user. A simpli-
fied model that accounts for the effects of rotor wake on the
aerodynamic forces L and D is used in the optimization prob-
lem formulation. No-flight-zones of known size and location
are defined as regional constraints in the bounded state space
χ of the optimization problem for which the vehicle is not al-
lowed to enter. The trajectory planner is described in detail in
the following sections.

Simplified QRBP Model for Trajectory Planning: The sim-
plified QRBP model considers only the longitudinal motion
of the vehicle (i.e. translation in the vertical x− z plane of
the inertial frame and rotation (pitch) about the body frame y
axis) for trajectory planning, while out of plane motion (i.e.
translation along y axis of the inertial frame and roll/yaw ro-
tations about the body frame x and z axes) is assumed to be
stabilized through inner loop control. Similar to the 3DOF
dynamic model of a conventional fixed-wing airplane cited
in (Ref. 17), four state variables (the horizontal and vertical
positions x and z, the inertial velocity Vi and the flight path an-
gle γ) are required to fully describe the longitudinal dynamics
of the QRBP in the inertial wind frame. The rotor thrust T and
nominal angle of attack α are employed to steer the vehicle.
Accordingly, the equations of motion are:

ẋ =Vi cosγ

ż =Vi sinγ

V̇i =
T cosα−Lsin(α−αe)−Dcos(α−αe)

m −gsinγ

γ̇ = T sinα+Lcos(α−αe)−Dsin(α−αe)
mVi

− gcosγ

Vi

where:

α = φ − γ

Vw = 1.2
√

T
8ρπR

Va =
√

V 2
i +V 2

w +2ViVw cosα

Va sinαe =Vi sinα

L = 0.5ρ(CL0 +CLα
αe)SlV 2

a
D = 0.5ρCD0SdV 2

a

(1)

Note Vw is the velocity of the wake generated by the rotors,
Va is the resultant airspeed as a result of rotor wake, and αe
is the effective angle of attack due to rotor wake (αe repre-
sents the angle between the vehicle longitudinal axis and the
airspeed vector Va). Note that the longitudinal dynamics are
represented such that the state x = [x,z,Vi,γ]

T and the input
u= [T,α]T .

To alleviate the potential computational cost for solving an
optimal control problem with a nonlinear dynamic constraint,
we invoke the concept of differential flatness to transform the
nonlinear model (ẋ= f (x,u)) into an equivalent linear form
(q̇ = Aq+ Bv), where the virtual state q and the synthetic
input v and are directly related to the state x and input u of
the simplified nonlinear model through endogenous mappings
defined by a set of flat outputs (y = {y1,y2, . . . ,yn}) and a fi-
nite number of their derivatives. This process is discussed at
length in previous work shown in (Ref. 16), and will be dis-
cussed with brevity here.

We choose the longitudinal and lateral inertial position to be
the flat outputs of the system (i.e.{y1 = x,y2 = z} and express
the states of the simplified model in terms of the flat outputs
as follows:

x = y1 ẋ = ẏ1
z = y2 ż = ẏ2

V =
√

ẏ2
1 + ẏ2

2 V̇i =
ẏ1 ÿ1+ẏ2 ÿ2√

ẏ2
1+ẏ2

2

γ = tan− 1( ẏ2
ẏ1
) γ̇ = ẏ1 ÿ2−ẏ2 ÿ1

ẏ2
1+ẏ2

2

(2)

We use these flat outputs to propagate the simplified model by
declaring a virtual state q =

[
x ẋ z ż

]T and a synthetic
input v =

[
ẍ z̈

]T , and relating them with the linear ODE q̇ =
Aq+Bv, where the matrices A and B are a simple chain of
integrators.

Finally, the original dynamics of the system are preserved by
enforcing the following implicit expression of the simplified
model (derived from Eq. 1) as a kinematic state constraint:

T cos(α)−Lsin(α −αe)−Dcos(α −αe)−ma⊤ = 0
T sin(α)+Lcos(α −αe)−Dsin(α −αe)−ma⊥ = 0

where: a⊤ = ẋẍ+ż(z̈+g)√
ẋ2+ż2

, a⊥ = ẋ(z̈+g)−żẍ√
ẋ2+ż2

(3)

Formulation of Optimization Problem for Trajectory Gen-
eration through Cluttered Environments: Following the
derivation of the differentially flat dynamic model, the opti-
mization problem for trajectory generation through cluttered
environments is formulated as the following standard nonlin-
ear problem (NLP)
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argmin
q, v

J =
∫ t f

t0
dt, (4a)

s.t q̇ = Aq+Bv, (4b)
q(t0) = q0, (4c)
q(t f ) = q f , (4d)

gx(q,v) ∈ χ,gu(q,v) ∈ µ, (4e)
gx(q,v), /∈ p ∈ χ (4f)

where Eq. 4a is the objective function (chosen to generate
minimum time flight paths), Eq. 4b is the dynamic constraint
of the problem (represented by the differentially flat model
described previously), Eqs. 4c and 4d are the boundary con-
straints that enforce the desired initial and terminal states of
the problem, and Eq. 4e are the constraints placed on the vir-
tual state and synthetic input that constrict the vehicle to act
within its flight envelope. Eq. 4f are the constraints on the
state space χ that define the obstacle set p that the vehicle
cannot enter. Once discretized, this optimization problem is
numerically solved in real time using the NLP solver IPOPT
to generate the QRBP flight path and feedforward signals.

Obstacle Avoidance Constraints The no-flight zones are in-
terpreted as a constraint on the allowable states within the fea-
sible state-space χ . These constraints are defined as a set of
circular regions p = {p1, p2, p3, . . . , pn} within χ where the
vehicle cannot enter as it completes the specified flight mis-
sion. Each no-flight zone expressed as:

pi = (x− xOi)
2 +(z− zOi)

2 − (rOi + rCi)
2, i = 1,2,3, . . . ,n

(5)

where the point (xOi ,zOi ) represents the center of mass of each
obstacle, rOi is the distance from each obstacle center of mass
to its longest edge, and rCi is a clearance space between each
obstacle edge and the boundary of pi, implemented to artifi-
cially inflate the no-flight zone to account for position tracking
error. Once each no-flight zone is defined, the state constraint
gx(q,v) /∈ p = p1 ∪ p2 ∪ . . . pn ∈ χ is enforced, requiring the
trajectory generator to plan the optimal path through the set of
no-flight zones within the bounded state space.

CONTROLLER DESIGN

Outer Loop Position Controller: Once the optimal path
planner solves the obstacle avoidance problem, the outer loop
position controller takes in the optimal flight path P∗

d (along
with its first and second derivatives) and the aerodynamic
feedforward signals (L∗,D∗,γ∗,α∗,α∗

e ) to generate the thrust
command Tc and the desired attitude Ψd necessary to steer
the vehicle along the flight path. These signals are generated
by way of dynamic inversion of the 2D point-mass model
used for trajectory generation shown in Eq. 1, expressed in
the inertial frame, assuming that the prescribed aerodynamic
forces approximate the actual aerodynamic forces for all time.
The outer loop assumes that any thrust or attitude command
(within a bounded set) is instantaneously attainable.

To compute Tc and Ψd , we invert Eq. 6 below, which depicts
the 2D point-mass model for trajectory generation in the iner-
tial frame:

[
T cosφ

T sinφ

]
−
[

L∗ sin(γ∗+α∗−α∗
e )+D∗ cos(γ∗+α∗−α∗

e )
L∗ cos(γ∗+α∗−α∗

e )−D∗ sin(γ∗+α∗−α∗
e )

]
︸ ︷︷ ︸F∗

Ay

F∗
Az


+

[
0

mg

]
= m

[
ÿ
ż

]
.

(6)

Inverting Eq. 6, assuming F∗
A ≈ FA, provides the following

expressions for Tc and φc:

Tc =
√

(F∗
Ay
+mÿc)2 +(F∗

Az
+m(z̈c −g)2

φd = tan−1

[
F∗

Az
+m(z̈c −g)

F∗
Ay
+mÿc

]
,

(7)

where ÿc and z̈c are the inertial acceleration commands for
longitudinal motion and altitude, respectively. To generate ÿc
and z̈c, we define a control law in terms of the desired second
order position error dynamics for the vehicle in the inertial
frame, such that

Ẍc =

ẍc
ÿc
z̈c

=

ẍd
ÿd
z̈d

+KDX

ẋd − ẋ
ẏd − ẏ
żd − ż

+KPX

xd − x
yd − y
zd − z

 , (8)

where KPX and KDX are the proportional and derivative gain
matrices for the control law, respectively. Remark: Note that
the outer loop (like the trajectory planner) assumes the QRBP
is limited to planar motion, generating only a thrust command
Tc and the desired pitch angle φd for position correction. Thus,
we schedule the remaining desired attitude profiles θd (roll)
and ψd (yaw), as well as the desired lateral inertial position
xd to zero for all time. Feeding the inertial acceleration com-
mand Ẍc into Eq. 7 generates the Tc and Ψd for the vehicle,
which are then sent to the control allocator and the inner loop
controller, respectively.
Inner Loop Attitude Controller: The inner loop attitude
controller takes in the desired attitude Ψd prescribed by the
position controller and produces the required control mo-
ments M to correct for attitude error. The attitude controller
is derived using the dynamic inversion approach described
in (Ref. 7), where the rotational dynamics of the vehicle are
simplified to that of a quadrotor. Second order (attitude) error
dynamics are used to generate the required vehicle rotational
acceleration:

Ψ̈c =

 φ̈c
θ̈c
ψ̈c

=

 φ̈d
θ̈d
ψ̈d

+KDψ

 φ̇d − φ̇

θ̇d − θ̇

ψ̇d − ψ̇

+KPψ

φd −φ

θd −θ

ψd −ψ

 ,

(9)
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where KPψ
and KDψ

are diagonal matrices containing the con-
troller gains for attitude and attitude rate. Note that Ψ̈d and Ψ̇d
are calculated in real time by, numerically differentiating and
filtering Ψd from the outer loop (as in (Ref. 7)), and Ψ̇, Ψ are
feedback signals. The required control M moments are then
calculated from Ψ̈c using

ṗc
q̇c
ṙc

=

1 0 −sθ

0 cφ sφ cθ

0 −sφ cφ cθ

 φ̈c
θ̈c
ψ̈c


+

0 0 cθ θ̇

0 sφ φ̇ −sφ sθ θ̇ − cφ cθ φ̇

0 cφ φ̇ −sθ cφ θ̇ + sφ cθ φ̇

φ̇

θ̇

ψ̇

 ,

(10)

M =

L
M
N

=

Ixx ṗc +(Izz − Iyy)qr
Iyyq̇c +(Ixx − Izz)pr
Izzṙc +(Iyy − Ixx)pq

 . (11)

Control Allocator: The thrust command Tc and control mo-
ments M are converted to the control input u⃗ using the fol-
lowing allocation:


Ω2

1
Ω2

2
Ω2

3
Ω2

4

=


kT kT kT kT

−dLkT −dLkt dLkt dLkt
kq −kq kq −kq

−dNkT dNkT dNkT −dNkT


−1

Tc
L
M
N

 ,

(12)

where kT = ρπR4CT , kQ = ρπR5CT , ρ is the atmospheric air
density, R is the rotor radius, CT and CQ are the rotor thrust
and rotor hub torque coefficients, respectively. dL and dN are
the longitudinal and lateral moment arms, respectively.

RESULTS

This section describes the results pertaining to the computa-
tional efficiency of the trajectory planner with the proposed
obstacle avoidance methodology and the performance of the
proposed control architecture. We present the optimal trajec-
tories and the tracking performance for two flight missions in
the following sections: (1) a transition from 3kt (1.54 m/s)
vertical ascent to 25kt (12.86 m/s) forward flight (H → FF)
through a field of 3 no-flight zones, and (2) a 25kt forward
flight to hover (FF → H) transition with 2 no-flight zones.

Hover to Forward Flight with 3 No-Flight Zones

For the 3kt ascent to 25kt forward flight mission, the vehicle
is tasked with flying through 3 circular no-flight zones, the
geometries of which are detailed in Table 1.

Transition Flight Path and Aerodynamic Feedforward
Profiles Figure 4 shows the resulting time-optimal flight path
generated by the path planner compared to a feasible initial
guess generated without consideration of obstacle avoidance.

Table 1. H → FF Mission No-Flight Zone Geometries

xobs,zobs (m) robs (m) rc (m)
NFZ 1 (6,3) 0.5 0.5
NFZ 2 (8,8) 0.5 0.5
NFZ 3 (2,4) 0.5 0.5

Figure 4. QRBP H → FF Optimal Obstacle Avoidance
Flight Path

Figure 5. QRBP H → FF Mission Aerodynamic Feedfor-
ward Profiles
Figure 5 shows the corresponding the aerodynamic feedfor-
ward profiles for dynamic inversion.
The reported average computational time for this trajectory is
0.231s, while the prescribed time of flight is 2.51s. Observing
Figure 4, it can be seen that the optimized flight path avoids
each no-flight zone by a significant margin (by at least 2 me-
ters).

Tracking Performance Figure 6 shows the flight path track-
ing for the obstacle avoidance H →FF flight mission. Figures
7 and 8 show the tracking of the inertial position and inertial
velocity, respectively. Figure 9 shows the pitch angle tracking
and the thrust command Tc into the vehicle (compared to the
projected feedforward T ∗).
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Figure 6. QRBP H → FF Mission Flight Path Tracking
Performance

Figure 7. QRBP H → FF Mission Inertial Position Track-
ing

Figure 8. QRBP H → FF Mission Inertial Velocity Track-
ing
Overall tracking performance of the dynamic inversion con-
troller is shown to be adequate for the H → FF flight mission,

Figure 9. QRBP H → FF Mission Attitude Tracking and
Thrust Input
with a maximum tracking error of 0.11 m, 0.15 m/s, and 1.7o

for position, velocity, and attitude tracking, respectively.

Forward Flight to Hover with 2 No-Flight Zones

For the 25kt forward flight to hover mission, the vehicle must
fly through 2 circular no-flight zones, the geometries of which,
with respect to the obstacle limit, are detailed in Table 2. Note
that for this transition, the terminal altitude is constrained to
be the same as the initial altitude, requiring the vehicle to com-
plete the FF → H transition without gaining altitude.

Table 2. FF → H Mission No-Flight Zone Geometries

xobs,zobs (m) robs (m) rc (m)
NFZ 1 (20,12.5) 1.5 1.5
NFZ 2 (40,12.5) 1.5 1.5

Transition Flight Path and Aerodynamic Feedforward
Profiles As with the previous mission, we show the optimal
flight path for the FF → H obstacle avoidance mission (com-
pared to a feasible initial guess that ignores the obstacles) in
Figure 10. Figure 11 shows the corresponding aerodynamic
feedforward profiles for the control architecture. The reported
average computational time for this case is 1.021s, while the
prescribed time of flight is 5.912s.

Comparing the optimal trajectory of the FF → H obstacle
avoidance case to the H → FF trajectory, it can be seen that
the trajectory planner has allotted much less clearance be-
tween the no-flight zones in the former compared to the lat-
ter. This is to be expected, the vehicle’s control authority in
γ is lower due to the high initial forward flight speed. Thus,
when assessing tracking performance, the controller must be
carefully tuned so as to avoid collision with the first obstacle
(should the vehicle enter the no-flight zone).
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Figure 10. QRBP FF → H Optimal Obstacle Avoidance
Flight Path

Figure 11. QRBP FF → H Mission Aerodynamic Feedfor-
ward Profiles
Tracking Performance We show the vehicle’s flight path
tracking performance in Figure 12. Figures 13 and 14 show
the tracking of the inertial position and velocity, respectively.
Figure 15 shows the pitch angle tracking and the thrust com-
mand into the vehicle.
Based on the tracking performance for the FF → H flight
mission, we note that, despite completing the mission, con-
troller performance has degraded compared to the H → FF
case, with a maximum tracking error of 5.68 m, 3.96 m/s, and
6.2o for position, velocity, and attitude tracking, respectively.
However, noting the flight path tracking in Figure 12, we see
that while the vehicle enters NFZ 1, it still manages to avoid
the obstacle inside of it, with the closest approach between the
vehicle and the obstacle being 1.31m. While the control archi-
tecture executed the obstacle avoidance mission, re-tuning is
necessary in order to eliminate the lag response in the inertial
velocity channel on the outer loop.

CONCLUSIONS
This paper proposed an optimal trajectory generation method-
ology for the guidance of a quadrotor biplane tailsitter through

Figure 12. QRBP FF → H Mission Flight Path Tracking
Performance

Figure 13. QRBP FF →H Mission Inertial Position Track-
ing

Figure 14. QRBP FF →H Mission Inertial Velocity Track-
ing
obstacle cluttered environments. The trajectory generation
and path tracking of two flight missions (H → FF , FF → H

7



Figure 15. QRBP FF → H Mission Attitude Tracking and
Thrust Input
transitions) were shown and analyzed for computational effi-
ciency and tracking performance. The following findings are
establish and reported: (1) The proposed control architecture
is capable of generating transition trajectories through clut-
tered environments with reasonable computational efficiency,
and (2) the control architecture is capable of following the
prescribed trajectories tightly enough to avoid the specified
obstacles. Based on the analysis of the results presented in this
paper, there are several open questions that must be addressed
to improve the proposed architecture, particularly improving
the computational efficiency of the architecture for more com-
plex FF → H missions and improving the performance of the
proposed controller for more robust tracking.
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