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ABSTRACT
In this work, a contract-based reasoning approach is developed for obstacle avoidance in unmanned aerial vehicles
(UAV’s) under evolving subsystem performance. This approach is built on an assume-guarantee framework, where
each subsystem (guidance, navigation, control and the environment) assumes a certain level of performance from
other subsystems and in turn provides a guarantee of its own performance. The assume-guarantee construct then
assures the performance of the overall system (in this case, safe obstacle avoidance). The implementation of the
assume-guarantee framework is done through a set of contracts that are encoded into the guidance subsystem, in the
form of a set of inequality constraints in the trajectory planner. The inequalities encode the relationships between
subsystem performance and operational limits that ensure safe and robust operation as the performance of the control
and navigation subsystems and environment evolve over time. The contract inequalities can be obtained analytically
or numerically using an optimization based path planner and UAV simulation. The methodology is evaluated in the
context of head-on obstacle avoidance, where the contracts are constructed in terms of (1) minimum obstacle detection
range, (2) expected obstacle size, (3) maximum allowed cruise velocity, (4) maximum allowable thrust, roll and pitch
angles, and (5) inner-loop tracking performance. Numerical and analytical generation of these contracts for this
scenario is demonstrated. Finally, in-flight contract enforcement is illustrated for typical scenarios.

NOTATION

CP - controller subsystem performance metadata [m]
CN - sensor performance metadata [m]
C0 - polytopic obstacle set
C - collision set
C and D - polytope equation parameters
Dod - obstacle detection range
Env - information about the operating environment
Etr - trajectory tracking error or deviation from the com-
manded trajectory
F/F̂ - continuous and discrete chains of integrators
fs - simplified 6DOF dynamics
G/Ĝ - continuous and discrete input matrices
g - gravity
J - cost function
K - rotational inertia in ψ

k - discrete time index
m - mass of the UAV
N - number of discrete time intervals
Np and Nu - mappings for the the flat output y and its
derivatives to the state and input, respectively
O - state of the obstacle
p - set of states of the UAV (position, attitude and their
derivatives)
p0/pD - initial and desired final states of the UAV
q = [X , Ẋ ,Y,Ẏ ,Z, Ż,ψ, ψ̇]T

q̂(k) = [X(kts), Ẋ(kts),Y (kts),Ẏ (kts),Z(kts), Ż(kts),ψ(kts),
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ψ̇(kts)]T ,
Robst - obstacle size
T - total thrust
Tmax - maximum thrust available to the controller subsystem
t0/t f - initial/final times
u - set of synthetic inputs
uψ - yaw moment
Vmax - maximum cruise velocity
w/ŵ - continuous and discrete sets of [Ẍ ,Ÿ , Z̈,uψ ]

T

X ,Y,Z - position of the UAV
XB,YB,ZB - body reference frame
xr,yr,zr - reference signals sent to the controller
y - differentially flat output [X ,Y,Z,ψ]T

Γ - the contract in the form of inequality
φ/θ/ψ - roll/pitch/yaw angles
φmax/θmax - maximum roll/pitch angles
φr/θr/ψr - reference attitude sent to the controller
Ξ1 - set of allowed UAV states
Ω - set of Vmax, φmax, θmax and Tmax

INTRODUCTION

With the ever-growing use of unmanned aerial vehicles
(UAVs) in civilian and military applications, ensuring robust
performance under evolving (and degrading) subsystem per-
formance is particularly critical for safe operation. While the
standard guidance, navigation, and control (GNC) architec-
ture typically guarantees safe operation under nominal system
performance, it is typically not able to provide similar guar-
antees when subsystems are performing under off-nominal
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conditions as it assumes that the performance of each subsys-
tem (or component) does not change with time. However, in
many operational scenarios, the performance of subsystems
of the UAV may change. For example, the performance of
the control subsystem may degrade as a result of decreased
maximum thrust available due to the damage to rotors or mo-
tors (Refs. 1, 2). Similarly, the performance of the naviga-
tion subsystem can vary due to changes in the environment,
say, degradation of visual environments due to brown out or
fog (Ref. 3). There are a handful of well-explored avenues
of dealing with the response of the overall control architec-
ture to such system degradation. Some approaches focus on
sensing algorithms and alternative sensing hardware to miti-
gate a loss of sensor performance (Ref. 4). In (Ref. 5), the
sensor degradation is quantified and used to schedule gains,
enabling an increase in performance over a more conservative
design, while still ensuring satisfactory performance. Model
reference adaptive control is another mechanism to respond to
UAV performance degradation (Ref. 6).
One of the major issues with such methodologies is the lack
of a unifying underlying framework. To address this issue,
there is now a growing body of research on contract based
system design approaches, which offer a more standardized
and generalizable methodology. In this approach, a system
is decomposed into smaller, easier to analyze subsystems us-
ing the assume-guarantee reasoning paradigm (Ref. 7). Under
the assume-guarantee reasoning, each subsystem guarantees
a certain level of performance while assuming that other sub-
systems perform at a certain level of performance as well. The
overall system is constructed in a such a way that if all sub-
systems hold true to their guarantee, the performance of the
system is guaranteed to be satisfactory.
Assume-guarantee reasoning methods have been used in a va-
riety of applications. For example, in (Ref. 8), such a strat-
egy was used for designing an optimal control policy of traf-
fic light signals. The authors partitioned a traffic network into
smaller sub-networks. Each sub-network assumes that other
sub-networks have an access to the global clock and the vol-
ume of vehicles leaving an adjacent sub-network does not ex-
ceed a certain level. Each sub-network guarantees the same
requirements as stated above. An assume-guarantee reason-
ing framework was also proposed for autonomous vehicles
in (Ref. 9). There, the vehicles guarantee that their actions
follow a certain action structure and the assumption the vehi-
cles make is that other cars follow a certain structure as well
and have a predictor to assess if their actions follow the struc-
ture. Such an approach was also demonstrated for a safety
critical aircraft power system in (Ref. 10).

Figure 1: Proposed GNC architecture.

In this paper, we propose a contract based reasoning approach
for UAV control. The proposed approach uses a modified
GNC architecture, as shown in Figure 1. The overall UAV
GNC system is decomposed into subsystems and each sub-
system assumes a certain level of performance from other
subsystems and guarantees a certain level of performance it-
self. Essentially, we use a contract that resides in the guidance
subsystem and encodes the relationship between subsystem
performance and operational limits to ensure safe and robust
operation as the performance of the control and navigation
subsystems and environment evolve over time. This contract
can encode this relationship for a variety of specific scenarios,
and ensure safety so long as all subsystems satisfy the con-
tract. This paper presents general analytical and numerical
approaches to obtaining this contract, and illustrates it specif-
ically for the scenario of obstacle avoidance.

PROBLEM STATEMENT

Consider the typical guidance-navigation-control system
where some metrics of real-time controller performance
(CP(t)) and real-time sensor performance (CN(t)) are avail-
able on-the-fly, as shown in Fig. 1. Naturally, it is desirable to
utilize this information to dynamically adapt to the changes in
the performance of the subsystems. In this paper, we develop
a framework to use CP(·) and CN(·) in the guidance subsystem
as shown in Figure 1 to adapt to the subsystem performance
changes.

Optimization-based guidance: The guidance subsystem is
typically formulated as an optimization problem, (1), where
p(·) and u(·) are the system state and (feedforward) input tra-
jectories to be determined.

min
p(·),u(·)

J(p,u), (1)

s.t. ṗ(t) = fs(p(t),u(t)), (2)
p(t0) = p0, p(t f ) = pD, (3)
p(·) /∈ O, p(·) ∈ Ξ1(Ω),u(·) ∈ Ξ2(Ω) (4)

where (1) is the cost function (flight time, fuel, flight distance
etc.), (2) is simplified (nonlinear) dynamics of the UAV, (3) is
initial and terminal state constraints and (4) is obstacle avoid-
ance, path and input constraints.
One mechanism to adapt to changes in navigation and con-
trol subsystem performance, CN(·) and CP(·) is by embedding
a set of constraints, termed a ‘contract’, into the (guidance)
optimization problem in real-time. The contract is a set of in-
equalities, Γ(·) ≤ 0, that relate changing values of CN(·) and
CP(·) to the limits on operational parameters Ω such that to
ensure safe and robust performance, where Ω is defined as a
set of operational parameters that define path and input con-
straints. Ω can be, for example, maximum allowed velocity,
maximum trajectory roll or pitch angles etc. These constraints
are enforced by appending Γ(·) ≤ 0 to the original optimiza-
tion problem in (1). In this paper, we design a methodology
to determine the relationships that make up Γ(·)≤ 0.

Γ(CP,CN ,Ω,Env)≤ 0 (5)
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where (5) is the contract between controller, navigation and
guidance subsystems. Note that the contract is also dependent
on the state of the environment (Env).

Figure 2: Obstacle avoidance scenario. The UAV is flying
from the initial state to the final state with a static obstacle in
between. The obstacle is detected at some distance, Dod , away
from the UAV. The planned obstacle avoidance trajectory is
tracked with some deviation from it, Etr.

Problem Scenario: Obstacle Avoidance. Naturally, the
choice (and construction) of the contract Γ(·) ≤ 0 in (5) de-
pends on the specific operational scenario for the UAV. In this
paper, as an exemplar, we consider the obstacle-avoidance
scenario shown in Figure 2, where the UAV is flying from
one waypoint to another waypoint with a static obstacle in
its way. This is the case of the head-on collision avoidance.
The expected obstacle size, Robst , is what characterizes the
operational environment (Env). The performance CN(·) of the
navigation subsystem is quantified by the guaranteed obstacle
detection range, Dod , i.e. the distance within which every ob-
stacle is guaranteed to be detected. The controller subsystem
performance, CP(·), is quantified by the trajectory tracking
accuracy, Etr, which may be assessed on-the-fly by looking at
the current in-flight tracking performance. For this scenario,
Γ(·) ≤ 0 is the relationship between Dod , Etr, operational pa-
rameters and environmental information such that the colli-
sion free flight is guaranteed. In particular, the operational
parameters considered are the maximum cruise velocity, Vmax,
maximum roll and pitch angles, φmax and θmax, and maximum
available thrust, Tmax, respectively. If (6) is satisfied, then tra-
jectories planned by the guidance subsystem with the param-
eters Ω are guaranteed to be safe and robust to the changes in
the performance of the subsystems.

Γ( Etr︸︷︷︸
CP

, Dod︸︷︷︸
CN

,Vmax,φmax,θmax,Tmax︸ ︷︷ ︸
Ω

,Robst︸︷︷︸
Env

)≤ 0 (6)

Remark: Though we consider obstacle avoidance here, the
methodologies proposed can be extended to general flight op-
eration.

OPTIMIZATION-BASED PATH PLANNING
WITH COLLISION AVOIDANCE

Nonlinear dynamics model. As noted in (1) , the guidance
subsystem requires a simplified dynamical model of the UAV
to plan trajectories (in this paper, we limit our exposition to a
quadcopter). The coordinate frame convention is North-East-
Down, the major forces acting on the quadcopter are grav-
ity, mg, and rotor thrust, T , and the major moment is the
moment uψ around the yaw axis. For a quadcopter, the in-
ner (attitude) loop controls the roll and pitch dynamics 5-10
times faster than the rest of the states (Refs. 11, 12) and thus
they are assumed to be instantaneously achievable and treated
as inputs to the system. Therefore, the input to the system
is u = [T,φ ,θ ,uψ ], and the dynamics equations of the form
ṗ = fs(p,u) can be rewritten as in (7), where Ẍ , Ÿ and Z̈ are
accelerations in a NED ground frame and φ , θ and ψ are roll,
pitch and yaw angles respectively.

Ẍ =− T
m (cosφ sinθ cosψ + sinφ sinψ);

Ÿ =− T
m (cosφ sinθ sinψ− sinφ cosψ);

Z̈ = g− T
m cosφ cosθ ;

ψ̈ = Kuψ

(7)

Differential Flatness. As demonstrated in (Refs. 13–15),
differentially flat form of the system facilitates path plan-
ning. Paths may be planned entirely in the differentially flat
states and input-space, and then mapped back to feasible sys-
tem state and input trajectories. As (8) shows, all the in-
puts can be expressed through the differentially flat output,
y = [X ,Y,Z,ψ]T , and its time derivatives.

φ = tan−1( −Ẍ sinψ+Ÿ cosψ√
(g−Z̈)2+(Ẍ cosψ+Ÿ sinψ)2

);

θ =− tan−1( Ẍ cosψ+Ÿ sinψ

g−Z̈ );

T = m
√

Ẍ2 + Ÿ 2 +(g− Z̈)2;

uψ = 1
K ψ̈

(8)

Following the work in (Ref. 13) and using (8), it is possible to
represent the system in a differentially flat form because there
exist functions Np and Nu that map the flat output y and its
derivatives to the state and input, respectively. Then, the non-
linear dynamics of the system ṗ = fs(p,u) can be expressed
in the equivalent form shown below in (9), with nonlinearity
transferred to bounds on the synthetic input w, so that F con-
tains only a chain of integrators for each of the flat outputs.

q̇(t) = Fq(t)+Gw(t);

q(t) = [X(t), Ẋ(t),Y (t),Ẏ (t),Z(t), Ż(t),ψ(t), ψ̇(t)]T ;
w(t) = [Ẍ(t),Ÿ (t), Z̈(t), ψ̈(t)]T

p(·) = Np(y(·), ẏ(·), ÿ(·)); u(·) = Nu(y(·), ẏ(·), ÿ(·))

(9)

F and G are defined as given below in (10):
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q̇(t) =

J2 0 0 0
0 J2 0 0
0 0 J2 0
0 0 0 J2


︸ ︷︷ ︸

F

q(t)+

L2 0 0 0
0 L2 0 0
0 0 L2 0
0 0 0 L2


︸ ︷︷ ︸

G

w(t) (10)

which is a bank of pure integrator-chains, with:

J2 =

[
0 1
0 0

]
, L2 =

[
0
1

]
(11)

Discretization. In order to solve the original trajectory plan-
ning problem in (1), it is first necessary to temporally dis-
cretize the system. The system is discretized using the zero-
order hold method with the sample time, ts, as shown in (12),
where N is a pre-selected number.

q̂(k+1) = F̂q̂(k)+ Ĝŵ(k); ts =
t f−t0
N−1 (12)

where q̂(k) = [X(kts), Ẋ(kts),Y (kts),Ẏ (kts),Z(kts), Ż(kts),
ψ(kts), ψ̇(kts)]T , w(k) = [Ẍ(kts),Ÿ (kts), Z̈(kts), ψ̈(kts)]T , k ∈
[0,N] is the state and input at kth time instant. F̂ and Ĝ are
defined as given below in 13.

F̂ = eFts , Ĝ =
∫ ts

0
eFτ G dτ (13)

assuming zero-order hold on the input.
Optimization problem restatement. If the cost function is cho-
sen to be the total flight time, t f − t0, the general optimization
(1) becomes a time optimal problem with dynamics given by
(12). The boundary conditions are determined by the state of
the UAV at t0 and t f . The map from the synthetic input to the
system input given in (8) along with the limits imposed on |φ |,
|θ |, |T | and |uψ | are used to generate the path constraints for
the optimization problem. The UAV must avoid the (convex)
obstacle. The construction of the contract requires a bound
on the maximum horizontal speed, Vmax. Thus, the boundary
conditions and path and obstacle constraints are as follows in
(14)

Boundary conditions:
q̂(1) = q̂0; ŵ(1) = ŵ0; q̂(N) = q̂f; ŵ(N) = ŵ f ;

Path constraints:
[q̂, ŵ] ∈ Ξ1 :
0≤

√
Ẋ2(kts)+ Ẏ 2(kts)≤Vmax;

zmin ≤ z(kts)≤ zmax;∣∣∣∣tan−1( −Ẍ(kts)sinψ(kts)+Ÿ (kts)cosψ(kts)√
(g−Z̈(kts))2+(Ẍ(kts)cosψ(kts)+Ÿ (kts)sinψ(kts))2

)

∣∣∣∣≤ φmax;∣∣∣− tan−1( Ẍ(kts)cosψ(kts)+Ÿ (kts)sinψ(kts)
g−Z̈(kts)

)
∣∣∣≤ θmax;

Tmin ≤ m
√

Ẍ(kts)2 + Ÿ (kts)2 +(g− Z̈(kts))2 ≤ Tmax;∣∣φ̇(kts)
∣∣≤ φ̇max;

∣∣θ̇(kts)
∣∣≤ θ̇max;

uψmin ≤ 1
K ψ̈(kts)≤ uψmax;

(14)

Obstacle avoidance constraints:

q /∈ O , for a circular column obstacle:

(X(kts)−Xobst)
2 +(Y (kts)−Yobst)

2 ≥ R2
obst ; and

q̂(k) /∈ C0 for a polytopic obstacle, where C0 is the set
that defines the polytopic obstacle;

(15)

The discretized optimization problem can be stated as follows

{t f ∗, ŵ∗(·), q̂∗(·)}= argmin
t f ,q̂(·),ŵ(·)

J = t f − t0, (16)

s.t q̂(k+1) = F̂q̂(k)+ Ĝŵ(k), (17)
q̂(1) = q̂0, q̂(N) = q̂ f , ŵ(1) = ŵ0, ŵ(N) = ŵ f (18)
q̂, ŵ ∈ Ξ1, q̂ /∈ O, (19)

where (16) is the cost function in the form of the total flight
time, (17) is the differentially flat discrete-time dynamics, (18)
are the initial and terminal boundary constraints and (19) are
the path and obstacle obstacle constraints.
Solving the minimization problem in (16) gives the optimal
input ŵ∗(·) and corresponding trajectory q̂∗(·). Using the
equations in (7) and (8), ŵ∗(·) and q̂∗(·) can be converted
to the reference signals for the UAV controller as shown in
Figure 1. The reference signals are xr,yr,zr,φr,θr,ψr.

Construction of the contract term: The remainder of the pa-
per will suggest an additional set of inequality constraints
Γ(Etr,Dod ,Vmax,φmax,θmax,Tmax,Env) ≤ 0 that can be ap-
pended to (16) to guarantee safe and robust performance of
the system as the performance of its components evolves
with time. An interpretation of Γ(·) ≤ 0 is that it encodes
the safe operational conditions, i.e. where the statements
q ∈ Ξ1,q /∈ O are satisfied. Then, when Γ(·) ≤ 0 cannot be
satisfied, safe operation is not guaranteed. The infeasibility
of (16) can be used to identify unsafe or impossible operating
conditions, which can be encoded in Γ(·)≤ 0 . To implement
this, an analytical approach can be used to identify states that
lead to collision with the obstacle. Alternatively, the guidance
path planning algorithm (16) can be used to numerically find
infeasible combinations of Vmax, Dod , φmax, θmax and Robst .

ANALYTICAL CONSTRUCTION OF
CONTRACT

In this section, we obtain the contract, Γ(·)≤ 0, by identifying
the states that lead to an inevitable collision with the obstacle,
given path and input constraints. We do so by introducing
the notion of collision set which is the set of all UAV states
that lead to a collision irrespective of the future inputs. We
also discuss an efficient way to compute the collision set and
how the collision set along with the path and input constraints
is used to generate the inequalities that make up the contract
Γ(·)≤ 0 to guarantee safe operation of the UAV.
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Figure 3: Illustration of the collision set. If the system state
enters the collision set, C = ∪q−1

i=1 Ci, a crash is inevitable.

The Collision Set

To start, we define the unsafe or collision set, i.e., the set of
states for which there does not exist an input sequence that
makes the state avoid the obstacle in (20).

C = {q̂(k)|∀(ŵ(k) ∈W, ŵ(k+1) ∈W, . . . ,

ŵ(k+ k̂) ∈W), ∃k̂ ∈ Z+|q̂(k+ k̂) ∈ O} (20)

Conversely, the state of the UAV being outside C guarantees
the existence of a feasible path that avoids O . Note that it is
not necessary to prescribe any initial conditions for this ap-
proach, nor are any avoidance paths constructed.

k̂-Step Collision Set To compute (20), we form recursively de-
fined sets Ck̂ for each subsequent backwards time step from
the time step when a collision occurs. Then, we can take the
union of these sets to obtain C , as shown in Figure 3. We
define the set of states Ck̂ in (21) such that for any allowable
input, the state will evolve into Ck̂−1 in the next time step, and
consequently into O in k̂ time steps.

The initialization of the recursion is formed by taking k̂ = 1
and Ck̂−1 = O . By construction, we can now express C as in
(22), where Cq = /0.

Ck̂ = {q̂(k)|∀ŵ(k) ∈W, q̂(k+1) ∈ Ck̂−1} (21)

C = C0∪C1∪ . . .∪Cq−1 (22)

Efficient Computation of the Collision Set

In order to compute the propagation of these sets, we take
advantage of the linear propagation of the differentially flat
states and use convex approximations for the input bounds and
obstacle so that computations only need to be done for the
vertices of the resulting polytopes. While this problem will
grow exponentially, a method to prevent the growth will be
presented. Let the obstacle O be approximated by a p-faceted
polytope C0 = {q̂|C0q̂ ≤ D0}. Let the allowable input set be
approximated by WC = conv(w1,w2, . . . ,wm), where conv(·)

means the convex hull of the argument. For this approach, we
then require ŵ(k) ∈WC, ∀k.

Letting q̂ evolve as in (12) and replacing W with WC, we can
specialize (21) to a system with linear state propagation, as
shown in (23). Then, it can be shown that the conjunction of
the conditions in (24) is necessary and sufficient for elements
q̂ to be in Ck̂.

Ck̂ = {q̂|∀ŵ ∈WC, F̂q̂+ Ĝŵ ∈ Ck̂−1} (23)

F̂q̂+ Ĝw1 ∈ Ck̂−1, . . . , F̂q̂+ Ĝwm ∈ Ck̂−1 (24)

Then, we obtain a closed propagation from Ck̂−1 to Ck̂ by con-
catenating those conditions for each vertex of the allowable
input set w j as in (25). To prevent the exponential growth
in number of rows as we continue this process to define sub-
sequent sets Ck̂+1,Ck̂+2, . . . ,Cq−1. Note that the ith row of
the inequality in (25) represents a hyperplane with the normal
vector given by the ith row of Ck̂ and offset given by the ith
element of Dk̂ j. Further, Ck̂ is independent of w j.

The full set of constraints is then p sets of m parallel hyper-
planes, so we can condense the inequalities into p rows at
each step as shown in (26), where Dk̂ ji is the ith element of
Dk̂ j. Propagation continues until it is found that Ck̂q̂≤ Dk̂,min
is infeasible. Now that each Ck̂ has been computed, we can
find the union C . Although each set Ck̂ is convex, C need
not be convex, in general. To obtain the closed propaga-
tion, we start with the inequalities that describe the polytope
Ck−1 = {q̂|Ck−1q̂ ≤ Dk−1} and find Ck and Dk (matrices de-
scribing the set Ck) as shown below.

Ck̂−1q̂≤ Dk̂−1,

Ck̂−1(F̂q̂+ Ĝw j)≤ Dk̂−1,

Ck̂−1F̂q̂≤ Dk̂−1−Ck̂−1Ĝw j,

Ck̂q̂≤ Dk̂ j.

(25)

Ck̂q̂≤


min{Dk̂11,Dk̂21, ...,Dk̂m1}
min{Dk̂12,Dk̂22, ...,Dk̂m2}

...
min{Dk̂1p,Dk̂2p, ...,Dk̂mp}

= Dk̂,min. (26)

Extraction of Contract from the Collision Set

For the above analytical approach, we have imposed con-
straints on the synthetic input such that the corresponding
system inputs are always within the system input bounds.
Hence, the constructed collision set not only depends obstacle
parameters Robst but also on the system input bounds i.e.
φmax,θmax,Tmax.

In this section, we are interested to generate a contract
(Γ) from the collision set (C ). In other words, given system
input bounds (φmax,θmax,Tmax), obstacle parameters (Robst )
and maximum allowable velocity Vmax, we are interested
to calculate the minimum distance from the obstacle such
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that the collision can be avoided. Technically, this minimum
distance also depends on the position and velocity direction
of the UAV. For the safety of the vehicle, we would like our
contract to be coordinate-free, that is, the contract should
be valid for any position or velocity of the UAV, given the
distance to the obstacle and maximum speed. Therefore, it
is sufficient to generate a contract that captures the worst
case scenario, which is trying to avoid head-on collision with
the obstacle. Though any coordinate frame can be used to
compute the collision set, the problem can be simplified if
the coordinate frame is fixed on the face of obstacle and is
oriented such that it easily captures the head-on collision
scenario. The obtained collision set is a union of (finite)
convex polytopes as shown below.

C = C0∪C1∪C2∪ ...∪Cr, (27)

where each of the Ck is set of inequalities in states of the
UAV. In our case of head-on collision and simplified coor-
dinate frame, we obtain the velocity (magnitude) and distance
inequalities. For every Ck, only one inequality corresponds to
the crash conditions with our particular face (of obstacle) of
interest. Given the maximum velocity of UAV (Vmax), we can
calculate the minimum required distance to the obstacle such
that inevitable collision can be avoided in k time steps. There-
fore, the inequality for each Ck can be interpreted as shown
below.

Dob ck,11 +Vmax ck,12 ≤ dk1 (28)

Figure 4: Obtaining Velocity-Distance Curve using analytical
approach

Each inequality, which has a corresponding collision set,
can be plotted together as shown in Figure 4. Also, each
inequality corresponds to a straight line (linear inequalities)
and separates the safe and unsafe regions. We can obtain
the overall unsafe region from the plot which is the union of
individual unsafe regions. The remaining region in the plot
is of our interest since it is safe. This way, we obtain our
contract Γ(·)≤ 0 which is the safe region in the plot.

Since the computed collision set depends on the bounds
on inputs and size of the obstacle, our inequalities that
make up the contract can be simplified and expressed as

Γ(Dod ,Vmax,φmax,θmax,Tmax,Robst) ≤ 0. It should be noted
that the collision sets provide us an analytical framework
to construct the contract but not necessarily an analytical
expresssion for Γ(.). There is another way to obtain the
inequalities that make up the contract as discussed in the next
section.

NUMERICAL CONSTRUCTION OF
CONTRACT

As was stated before, the infeasibility of (16) can be
interpreted as an unsafe or impossible operating condi-
tion. The guidance path planning algorithm (16) can be
run iteratively to find these conditions, i.e. the infea-
sible combinations of Vmax, Dod , φmax, θmax and Robst .
The feasible and infeasible combinations of the afore-
mentioned parameters are separated by a hyper-surface
Γ(Dod ,Vmax,φmax,θmax,Tmax,Robst) = 0 into two regions. The
region encoded as Γ(Dod ,Vmax,φmax,θmax,Tmax,Robst) ≤ 0
is feasible and safe. The region encoded as
Γ(Dod ,Vmax,φmax,θmax,Tmax,Robst) > 0 is infeasible and
as such unsafe. The next section will compare both analytical
and numerical approaches of obtaining the contract.

Comparison of Analytical and Numerical Construction of
contract

Before proceeding with comparing the analytical and numer-
ical approaches, it is necessary to describe the nature of the
obstacles used in both approaches. The numerical solution
uses a circular column obstacle of radius 1m. The analytical
approach approximates the circular column with two square
columns: one inscribed in the circle and the other square cir-
cumscribes the circle. This ensures that the result for the
circular obstacle will be bounded by the results of the two
square obstacles. The sides of the inscribed and circumscribed
squares are

√
2m and 2m respectively.

Figure 5: The plan view of the obstacles and UAV used in the
construction of the contract. Square columns with the sides
of
√

2m and 2m are used in the analytical approach. The cir-
cular column with the radius of 1m is used in the Numerical
approach.

The infeasible combinations of Vmax, Dod , φmax, θmax and Robst
found iteratively can be cross-checked against the same com-
binations found by the analytical approach. The results of the
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cross-check are presented below in Figures 6 and 7. The in-
feasible and unsafe region is above each of the curves, i.e.
flying with the operating condition from the region above the
curve cannot guarantee safety. The results are presented for
the obstacles defined above in Figure 5.

Figure 6: Comparison of analytical and numerical ap-
proaches. Plot of Vmax vs Dod , φmax= 5o, θmax = 5o. Safe
and feasible region is below each of the curves. The results
correlate well. The numerical results for the circular column
are underbound and overbound by the analytical results for
two square columns as expected.

Figure 7: Comparison of analytical and numerical ap-
proaches. Plot of Vmax vs Dod , φmax=13o, θmax=13o. Safe and
feasible region is below each of the curves. The results cor-
relate well. The numerical results for the circular column are
underbound and overbound by the analytical results for two
square columns as expected.

From Figures 6 and 7, we find that the analytical and
numerical approaches correlate well for Dod ≤ 5m. The
discrepancy between analytical and numerical approaches
can be attributed to the nature of the obstacle used in each

of the approaches: a square column in the analytical case
and circular column in the numerical case. Notice that as
the maximum allowed roll and pitch angles are increased
from 5o to 13o, the maximum allowed safe cruise velocity is
increased as well. The greater roll and pitch angles allow for
a more aggressive trajectory and thus it is possible to plan a
trajectory for a higher cruise velocity with greater trajectory
angles.

While contracts can be constructed using either of the ap-
proaches presented above, we proceed with the numerical ap-
proach as it facilitates implementation of the constraints in
(14).

CONSTRUCTION OF GENERAL
CONTRACTS

UAV simulation model

Figure 8: The general overview of the inner loop control al-
gorithm. The controller subsystem is a series of cascaded PID
controllers. The reference trajectory generator is the guidance
subsystem.

Prior to describing the general contract that involves the per-
formance of the Navigation and Controller subsystems as well
as the Operational Environment, it is necessary to briefly de-
scribe the model used to assess the UAV simulation model
that will be used to assess the Controller subsystem perfor-
mance as well as to test the proposed methodology for ob-
stacle avoidance. The model is a Simulink model of Parrot
Mambo quadcopter which is a standard part of the Aerospace
Blockset of MATLAB. It uses the empirical moment of in-
ertia tensor, ω2 model for thrust and torque, cascaded PID
controller with xr, yr, zr and ψr as reference signals and feed-
forward attitude (φr, θr) signal for improved reference track-
ing as shown in Figure 8. This model will be first used to
assess the controller subsystem performance and later on to
test if the proposed methodology can plan trajectories so as
to safely avoid an obstacle. When assessing the controller
subsystem performance it is also important to account for the
possible controller performance degradation. The controller
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Figure 9: The result of the numerical sweep for various Vmax,
Dod , φmax and θmax. The region Γ(·)≤ 0 becomes the contract
and it encodes feasible combinations Vmax, Dod , φmax and θmax
for Robst = 1m.
subsystem performance degradation is modelled as a decrease
of thrust gain in the ω2-model, which decreases the maxi-
mum thrust Tmax available to the controller subsystem from
the nominal value of thrust Tnom. The effect of the maximum
thrust decrease is demonstrated in a later section along with
the contour error which is the method used in this paper to
quantify the controller subsystem performance.

Contract: Navigation subsystem

To construct the contract between the Navigation and Guid-
ance subsystems, it is necessary to find the infeasible com-
binations of Vmax, Dod , φmax, θmax and Robst that the UAV is
likely to encounter in its operation.

To do so, a numerical sweep through all of these combina-
tions is performed. The infeasible combinations of Vmax, Dod ,
φmax, θmax and Robst can be encoded as a hyper-surface and re-
gion Γ(Dod ,Vmax,φmax,θmax,Tmax,Robst)≤ 0 below the hyper-
surface becomes the contract. To represent the region, we may
fit a curve to the numerical sweep data points. For brevity, the
equation of the fitted hyper-surface is omitted. The key idea
is that when Γ(·) ≤ 0 is satisfied, the unsafe operating con-
ditions are avoided. The result of the numerical sweep for
Robst = 1m is shown below in Figure 9. As Figures 6, 7 and
9 show, greater obstacle detection range Dod and more tra-
jectory agility (higher φmax and θmax) allow for higher cruise
velocity Vmax. Similar to Figures 6 and 7, the safe and feasible
region is below and the unsafe and infeasible region is above
the surface in Figure 9.

One interpretation of Figure 9 is that for some environment
with a particular expected obstacle size (Robst ) changes in the
obstacle detection range Dod , maximum allowed agility φmax
and θmax, necessitate change in the cruise velocity Vmax for
any planned trajectory. The contract is thus:

“given an environment with a certain expected obstacle size
(Robst), if the navigation subsystem can guarantee detection of

Figure 10: Vmax as the function of obstacle size and obstacle
detection range (Robst and Dod) for φmax = θmax = 7o. The safe
and feasible region is below the surface.
every obstacle within Dod , then the trajectories planned by the
guidance subsystem subject to a maximum velocity Vmax that
corresponds to the selected φmax and θmax ensure that obstacle
avoidance is possible.”

This contract can be mathematically expressed as
Γ(Dod ,Vmax,φmax,θmax,Tmax,Robst) ≤ 0 and is shared
between the navigation and guidance subsystems. It is
important to note that in Figure 9 the expected obstacle
size, Robst , was held constant at 1m. Next, we show how
the expected obstacle size affects the contract and how the
controller subsystem performance can be included in the
construction of the full contract.

Contract: Environment

Environmental variables can also we included in the con-
tract. For example, the expected obstacle size (an environ-
mental variable external to the UAV) also affects the maxi-
mum cruise velocity since an obstacle of a bigger size would
require a lower cruise speed or more aggressive trajectory an-
gles to avoid it. If the UAV is operating in a forest, then the
most likely type of obstacle is a tree trunk or an occasional
animal. When operating in the cities at the lower altitudes,
then the most likely obstacle is a human, car or again a tree
trunk. Having the knowledge about the environment (Robst ),
it is possible to enforce the “speed limit” so as to guarantee
safe operation. Figure 10 below shows how the obstacle size
(Robst ) and obstacle detection range (Dod) influence the max-
imum cruise speed (Vmax) for one set of maximum roll and
pitch angles (φmax and θmax). As Figure 10 shows, a greater
obstacle size would require the UAV to fly slower in order
to safely avoid it. Similar to Figures 6, 7 and 9, the safe
operating region is the region below the surface. Conduct-
ing the numerical sweep for various obstacle sizes, obstacle
detection distances and maximum allowed pitch/roll angles
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Figure 11: The contour error Etr is the shortest distance to the
commanded trajectory from the current state of UAV
would result in Vmax as a function of the expected obstacle
size, Robst obstacle detection range, Dod , maximum trajectory
angles, φmax and θmax. This function is encoded as a region
Γ(Dod ,Vmax,φmax,θmax,Tmax,Robst) ≤ 0 with Robst replacing
Env to incorporate the knowledge about the environment. The
next and final step in defining the contract is to add the con-
troller performance metrics to the contract.

Contract: Controller subsystem

When planning trajectories around obstacles, to safely avoid
the obstacles, it is important to account for the deviation
from the commanded trajectory because of the external dis-
turbances, modeling uncertainty, and controller performance.
The controller subsystem ultimately determines the accuracy
of trajectory tracking. Thus, it is necessary to quantify the
controller subsystem performance to be included in the con-
tract. One way to do this is by using the contour error. This
paper uses the well-known definition of contour error for CNC
machining (Ref. 16): the shortest absolute distance from the
commanded path to the current location of the UAV. Figure 11
illustrates the concept of the contour error.

Having defined the controller subsystem performance metrics,
it is now possible to simulate trajectories with different Vmax,
φmax and θmax (see Figure 8). For illustrative purposes in this
paper, the trajectories are simulated for different thrust lim-
its (0.6Tmax to Tmax) enforced in the controller subsystem, to
mimic varying controller performance levels. The trajectory
tracking contour error against maximum cruise velocity, Vmax,
and thrust available to the controller, Tmax, for the fixed trajec-
tory angles φmax and θmax is presented in Figure 12.

As can be seen from Figure 12, the contour error depends
significantly on the controller performance (the maximum
available thrust, Tmax) and to a lesser extent on Vmax. We can
generate a hyper-surface for Etr by sweeping through various
values of Vmax, φmax, θmax and Tmax. Thus, the guarantee of
the controller subsystem is that its performance will lie within
the safe operational region shown above. The next subsection
will show how the quality of the trajectory tracking can be
incorporated in trajectory planning (and thus included the
contract).

Virtual obstacle envelope: When planning safe trajectories
around obstacles, it is important to take into account the con-
tour error (i.e., the performance of the controller subsystem).

Figure 12: Contour error, Etr, as a function of Vmax and Tmax
for φmax = θmax = 5o. If trajectory tracking accuracy has a
value below the surface, then the UAV operates in the safe
operational region.

Figure 13: Real and inflated virtual obstacles. The obstacle is
inflated to account for inaccurate trajectory tracking.

One way to do this is by increasing the obstacle size by an ap-
propriate Etr which is dependent on Tmax, Vmax and φmax, θmax.
The increase in the obstacle size is shown below in the Figure
13.

As Figure 13 above shows, the size of the obstacle is increased
in order to take into account the imprecise trajectory track-
ing. The size of the real obstacle (Robst ) is increased by Etr.
Thus, the trajectories are planned around a larger virtual ob-
stacle. Increasing the virtual obstacle size decreases the ef-
fective distance to the obstacle and as the result the trajectory
parameters Vmax, φmax and θmax have to change to guarantee
feasibility of (16) (and thus safe operation of the UAV). The
size of the virtual obstacle is dependent on the controller per-
formance, Etr, and as such the region defined earlier needs to
be updated to reflect that dependence. Thus, the region be-
comes Γ(Dod ,Vmax,φmax,θmax,Tmax,Robst ,Etr) ≤ 0. The next
section explains how data in Figures 9, 10 and 12 can be com-
bined to construct the contract that can guarantee safe obstacle
avoidance.
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Analyzing the contract based reasoning mechanism

As was shown in Figures 6, 7 and 9, increasing allowed
trajectory angles φmax and θmax enables a greater Vmax, as
this would permits planning more aggressive trajectories
which in turn permits safe flights with higher cruise velocity
Vmax. Therefore, it might be tempting to plan trajectories for
φmax and θmax as large as possible in order to fly at a greater
Vmax. However, as Figure 12 shows, increasing the maximum
allowed cruise velocity Vmax results in poorer tracking perfor-
mance. This poor tracking performance then necessitates the
change in the virtual obstacle size. Finally, the obstacle size
itself might change as the UAV is flying through different
environments. To take into account all of these parameters
which are highly interlinked and interdependent the paper
proposes to use the contract-based reasoning.

In summary, in the contract based paradigm, the system is
decomposed into smaller subsystems and each subsystem as-
sumes a certain level of performance of other subsystems and
guarantees a certain level of performance itself. Thus, un-
der this paradigm the navigation subsystem guarantees that
every obstacle within a certain range (Dod) from the UAV
is detected. The environment is assumed to have obstacle
of a certain expected size, Robst . The controller subsystem
guarantees that given a certain trajectory parameters (Vmax,
φmax/θmax) the trajectory tracking accuracy will be no worse
than a certain Etr. Thus, the trajectories will be planned
around a virtual obstacle of the size Robst + Etr. Finally,
the guidance subsystem assumes that the navigation and con-
troller subsystems have a certain levels of performance and
it guarantees that the planned trajectories will satisfy the re-
gion Γ(Dod ,Vmax,φmax,θmax,Tmax,Robst ,Etr) ≤ 0. Thus, if all
the subsystems satisfy the contract then the planned trajecto-
ries would allow to safely avoid the obstacle. On the other
hand if one of the subsystems does not satisfy the contract or
in other words the inequality Γ(·)≤ 0 is violated the safe ob-
stacle avoidance cannot be guaranteed. To guarantee that the
contract is satisfied the guidance subsystem is constantly run-
ning in the background and checks if the inequality Γ(·)≤ 0 is
satisfied or not. In case the inequality is not satisfied the guid-
ance subsystem adjusts the trajectory such that the inequality
is satisfied which is equivalent to the contract satisfaction. The
next section presents the full contract implementation. The
obstacle avoidance using the contract is demonstrated in Fig-
ures 14 and 16. The in-flight implementation of the contract
is shown in Figures 17 and 18.

DEMONSTRATION OF CONTRACT
IMPLEMENTATION

To demonstrate the contract implementation, the operational
scenario in Figure 2 is used. The UAV is moving from
some initial state to some final state with a static obstacle in-
between the two. The obstacle is detected at the distance Dod
away from the UAV. The controller subsystem performance
can be off-nominal (i.e. less thrust available to the controller)

and navigation subsystem performance can also change, i.e.
the obstacle is detected closer to the UAV or father away from
it. The guidance subsystem plans safe trajectories by taking
into account all of these parameters.

Figures 14, 15 and 16 demonstrate obstacle avoidance
with the full contract implemented. In order to do that,
the guidance subsystem takes the following inputs to plan
safe trajectories: the maximum available thrust, Tmax, ob-
stacle detection distance, Dod , and the expected obstacle
size, Robst . Given this information, the guidance sub-
system adjusts operational limits to satisfy the contract
Γ(Dod ,Vmax,φmax,θmax,Tmax,Robst ,Etr) ≤ 0 and to guarantee
safe obstacle avoidance as shown in the Figures 14, 15 and
16.

Figure 14: Testing the contract based reasoning for the obsta-
cle avoidance scenario. The controller and navigation subsys-
tems performance: Tmax = 0.6Tnom,Dod = 6m. The trajectory
parameters: φmax = θmax = 7.03o,Vmax = 4.09m/s. The ex-
pected obstacle size: Robst = 1m. The trajectory tracking er-
ror: Etr = 0.85m. The controller has only 0.6Tnom available to
it and this necessitates a big virtual envelope around the obsta-
cle. The UAV enters the virtual obstacle envelope but avoids
the real obstacle safely. The guidance subsystem adjusts the
cruise speeds accordingly.

The controller subsystem in Figure 14 has only 0.6Tnom avail-
able and as such it tracks trajectories poorly, i.e. Etr is large.
Poor trajectory tracking necessitates a large virtual obstacle
envelope as is evident from Figure 14. As the controller sub-
system performance is improved, i.e. more thrust is avail-
able to the controller (0.8Tnom and Tnom in Figures 15 and 16
respectively), the size of the virtual obstacle envelope is de-
creasing. The UAV enters the virtual obstacle envelope for all
cases (Figures 14-16) and safely avoids the real obstacle for
all cases as well. Along with the controller subsystem per-
formance, the navigation subsystem performance as well as
the expected obstacle size are changing in Figures 14-16, the
guidance subsystem adjusts the trajectory parameters (φmax,
θmax and Vmax) accordingly.
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Figure 15: Testing the contract based reasoning for the ob-
stacle avoidance scenario. The controller and navigation sub-
systems performance: Tmax = 0.8Tnom,Dod = 6m. The tra-
jectory parameters: φmax = θmax = 9o,Vmax = 5.29m/s. The
expected obstacle size: Robst = 0.3m. The trajectory tracking
error: Etr = 0.75m. The controller has 0.8Tnom available to
it which is more than what it had in Figure 14 and as the re-
sult a smaller virtual obstacle envelope is required. The UAV
enters the virtual obstacle envelope but avoids the real obsta-
cle safely. The guidance subsystem adjusts the cruise speeds
accordingly.

Figure 16: Testing the contract based reasoning for the ob-
stacle avoidance scenario. The controller and navigation sub-
systems performance: Tmax = Tnom,Dod = 3m. The trajectory
parameters: φmax = θmax = 9o,Vmax = 2.93m/s. The expected
obstacle size: Robst = 0.6m. The trajectory tracking error:
Etr = 0.24m. This is the case of the nominal controller sub-
system and as such the smallest virtual obstacle envelope is
required. The guidance subsystem adjusts the cruise speeds
accordingly.

In-flight contract implementation

To guarantee the safe UAV operation, it is desirable to sat-
isfy the contract at all times. The guidance subsystem can
be run in the background to constantly satisfy the contract
Γ(Dod ,Vmax,φmax,θmax,Tmax,Robst ,Etr) ≤ 0. The Figures 17
and 18 demonstrate how the contract can be constantly satis-
fied when the guidance subsystem is in real-time during the
UAV operation.

As is evident from Figure 17, when the obstacle detection
range is 3m and the performance of controller subsystem is
nominal (Tmax = Tnom), the guidance subsystem plans trajec-
tories for a lower cruise velocity of around 3m/s. Once the ob-
stacle detection range is increased to 7m (the UAV has cleared
a foggy area, for example), the guidance subsystem increases
the cruise velocity to around 5.5m/s. As the thrust available
to the controller subsystem drops to 0.8Tnom, Etr is increased
since the tracking performance deteriorated. Subsequently
the guidance subsystem has to reduce the cruise velocity to
around 5m/s. The guidance subsystem continues to do the
trajectory parameters adjustment to satisfy the contract as it
is run in the background. The expected obstacle size is kept
constant at Robst = 1m in Figure 17.

The guidance is also run constantly in the background in or-
der to satisfy the contract in Figure 18. As the obstacle detec-
tion range is increased from 3m to 7m, the maximum cruise
velocity is increased to 5.3m/s. As the obstacle size is de-
creased from 1m to 0.6m, the maximum allowed cruise ve-
locity is increased to 5.6m/s. The thrust available to the con-
troller subsystem is kept constant at Tmax = 0.8Tnom in Figure
18. The changes in the tracking accuracy, Etr, are caused by
the changes in the cruise velocity. Etr is dependent on the
trajectory parameters as was shown before in Figure 12.

The contract is continuously enforced in the background by
the guidance subsystem assuring safe flight. As the obstacle
detection range, Dod , changes due to changes in the environ-
ment or as the tracking performance, Etr, changes, the maxi-
mum velocity, Vmax, is adjusted accordingly to guarantee the
safety.

CONCLUSIONS

A UAV may experience changes in the performance of its sub-
systems during the course of its operation. To ensure safe and
robust performance of the UAV under these changes this pa-
per proposed a contract based methodology. The paper also
demonstrated analytical and numerical ways of obtaining the
contract between guidance and navigation subsystems. It was
shown that by using metadata about the performance of the
subsystems such as obstacle detection range Dod , trajectory
tracking accuracy Etr and environment information, Robst , the
contract between the subsystems can be designed. The paper
also demonstrated the safe flight performance with the con-
tract enforced in the guidance subsystem.
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Figure 17: In-flight contract implementation. The perfor-
mance of the navigation and controller subsystem are evolving
over time. The environment stays the same with the expected
obstacle size of Robst = 1m. The guidance subsystem adjust
the operational parameters so as to guarantee the safe oper-
ation. It does so by taking into account the performance of
each of the subsystems and environment information.
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