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ABSTRACT
This work presents the use of statistical time series methods to detect and identify rotor failures in multicopters. A
concise overview of the development of various time series models using scalar or vector signals, statistics, and fault
detection and identification methods has been provided. The statistical methods employed in this study are based
on parametric time series representations and response-only signals of the aircraft state, as the external excitation is
non-observable. The comparative assessment of the effectiveness of scalar and vector statistical models and several
residual-based fault identification methods are presented in the presence of external disturbances, such as various levels
of turbulence and uncertainty, and for different rotor failure scenarios. Fault identification (classification) of different
rotor failures has been performed upon post-failure controller compensated steady state signals. Vector models, being
more elaborate models than their scalar counterparts, exhibit superior performance in fault identification. On the other
hand, residual uncorrelatedness method have greater capability to differentiate between the different rotor failures than
residual variance method.

NOTATION

α : Type I risk level
β : Type II risk level
γ : Autocorrelation
τ : Lag
σ2 : Residual variance
Σ : Residual covariance matrix
ARMA : AutoRegressive Moving Average
E{·} : Statistical expectation
PE : Prediction error
ARX : AutoRegressive with eXogenous excitation
PSD : Power spectral density
BIC : Bayesian information criterion
RSS : Residual sum of squares
FRF : Frequency response function
ACF : Auto-covariance function
iid : Identically independently distributed
SPP : Samples per parameter
OLS : Ordinary least squares
UAV : Unmanned aerial vehicle
WLS : Weighted least squares
SPRT : Sequential probability ratio test
SSS : Signal sum of squares
AR : Scalar AutoRegressive model
VAR : Vector AutoRegressive model
e-VTOL : electric vertical take-off and landing
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INTRODUCTION

Multicopters, being capable of hovering and vertical take-off
and landing, have attracted the interest of the community with
respect to both commercial and defense applications over the
last decade. Given the increasing interest and widespread use
of these vehicles in a number of important arenas, early fault
detection and identification of such systems are critical in or-
der to ensure and improve their overall safety, operation and
reliability. Rotorcraft are complex systems that exhibit strong
dynamic coupling between rotors, fuselage, and control in-
puts, along with time-varying and cyclo-stationary behavior.
As a result, they face certain system modeling and fault de-
tection and identification challenges that are not present in
fixed-wing aircraft. These issues, as well as potential solu-
tions, have been explored in the recent literature.

An algorithm for online detection of motor failure using
only inertial measurements and control allocation by an ex-
act redistributed pseudo-inverse method for octacopters has
been demonstrated by Frangenberg et al. (Ref. 1). Heredia
and Ollero (Ref. 2) have addressed sensor fault identifica-
tion in small autonomous helicopters using Observer/Kalman
Filter identification. Fault tolerant control for multi-rotors
(Refs. 3, 4), as well as various fault diagnosis methods re-
lated to analytical models, signal processing, and knowledge-
based approaches for helicopters have also been proposed
(Refs. 5–7).

Statistical time series methods have been used to detect var-
ious fault types in aircraft systems due to their simplic-
ity, efficient handling of uncertainties, no requirement of
physics-based models, and potential for applicability to dif-
ferent operating conditions (Refs. 8–11). Dimogianopoulos et
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Fig. 1: Schematic representation of a regular hexacopter

al. (Ref. 12) have demonstrated the effectiveness of two sta-
tistical schemes based on Pooled Non-Linear AutoRegressive
Moving Average with eXogenous excitation (P-NARMAX)
to detect and isolate faults for aircraft systems under different
flight conditions, turbulence levels, and fault types and mag-
nitudes. The first method models the pilot input and aircraft
pitch rate relationship, while the second approach models the
relationship between horizontal and vertical acceleration, an-
gle of attack and pitch rate signals in fixed-wing aircraft.

The objective of this paper is the presentation of a robust
framework for fault identification (FDI) in multicopters using
statistical time series methods based on aircraft response-only
signals in the presence of external disturbances, such as tur-
bulence, and uncertainty. This work is a continuation of a re-
cent prior work with the addition of modeling different faulty
states of the aircraft to identify rotor failures from the post fail-
ure fault-compensated signals by statistical methods (Ref. 6).
FDI is the first and important step to implement an active fault
tolerant control system that achieves real-time and effective
control allocation redistribution or reconfiguration of the ve-
hicle to complete safe flight in the event of rotor failure.

HEXACOPTER MODEL AND DATA
GENERATION

Physics-Based Modeling of Multicopter System

A flight simulation model has been developed for a regular
hexacopter (Fig. 1) using summation of forces and moments
to calculate aircraft accelerations. This model is used as the
main source of simulated data under varying operating and en-
vironmental conditions, as well as different fault types. Rotor
loads are calculated using Blade Element Theory coupled with
a 3×4 Peters-He finite state dynamic wake model (Ref. 13).
This model allows for the simulation of abrupt rotor failure
by ignoring the failed rotor inflow states and setting the out-
put rotor forces and moments to zero.

A feedback controller is implemented on the nonlinear model
to stabilize the aircraft altitude and attitudes, as well as track
desired trajectories written in terms of the aircraft veloci-
ties. This controller is designed at multiple trim points, with
gain scheduling between these points to improve performance
throughout the flight envelope.

The state vector consists of the 12 rigid body states and is
defined in Eq. 1.

x =
{

X Y Z φ θ ψ u v w p q r
}T (1)

The input vector is comprised of the first four independent
multirotor controls for collective, roll, pitch and yaw and is
defined in Eq. 2:

u =
{

Ω0 ΩR ΩP ΩY
}T (2)

The control architecture is illustrated in Fig. 2 and detailed in
Ref. 3. This control design has been demonstrated to perform
well even in the event of rotor failure, with no adaptation in
the control laws themselves.

Data Generation for Model Identification

A continuous Dryden wind turbulence model (Ref. 14) has
been implemented in the flight simulation model. The Dryden
model is dependent on altitude, length scale, and turbulence
intensity and outputs the linear and angular velocity compo-
nents of continuous turbulence as spatially varying stochastic
signals. The proper combination of these parameters deter-
mines the severity of the turbulence, i.e., light, moderate and
severe.

In this system, the altitude is set to 5 m and the length scale
(hub-to-hub distance of the hexacopter) is equal to 0.6096 m
(2 ft). The data sets for the various aircraft states are gener-
ated through a series of simulations under different turbulence
levels (light, moderate and severe) both for the healthy aircraft
as well as under different fault types, such as failure of front
and side rotors. For a summary of the generated data sets, see
Table 1. The time series (signals) of the hexacopter attitudes
(aircraft states) for the healthy state, as well as under the dif-
ferent fault types, i.e. complete failure of front or side rotors,
provide useful insight into the dynamics of the system. The
rotor failures addressed in this work are: front rotor (rotor 1),
right-side rotor (rotor 2), and left-side rotor (rotor 6).

WORKFRAME OF STATISTICAL TIME
SERIES FOR FAULT DETECTION AND

IDENTIFICATION

Let Z0 designate the aircraft under consideration in its healthy
state, and Z1,Z2, and Z6 the aircraft under rotor 1,2, or 6 fail-
ure. Zu designates the unknown (to be determined) state of

Table 1: Simulation data under the considered flight states.

Aircraft state Number of data sets for turbulence levels
Light Moderate Severe

Healthy 20 20 20
Rotor failure (1) 20 20 20
Rotor failure (2) 20 20 20
Rotor failure (6) 20 20 20
Sampling frequency: fs = 1000 Hz
Signal length in samples: 60000 (60 s)
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Fig. 2: Controller Block Diagram

the aircraft. Statistical time series modeling is based on dis-
cretized response signals y[t]1 (for t = 1,2, . . . ,N) which are
the aircraft states. N denotes the number of samples and the
conversion from discrete normalized time to analog time is
based on (t−1)Ts, with Ts being the sampling period. The re-
sponse signals are represented by Z and subscript (0,1,2,6,u)
is used to denote the corresponding state of the aircraft that
produced the signals. The initial sampling frequency (Fs) for
the signals is chosen such that the frequency range of interest
is 0− 500 Hz. After a preliminary investigation, the signals
are downsampled to the final frequency bandwidth of 0− 50
Hz.

The signals generated from simulation are analyzed by para-
metric or non-parametric statistical time series methods and
proper models are fitted and validated. Such models are
identified for the above mentioned cases and denoted by
M0,M1,M2,M6 in the baseline phase. Fault detection is based
on binary statistical hypothesis testing (Ref. 15) that com-
pares the residual properties (known as characteristic quan-
tity, Q) generated from Zu in each inspection phase with that
available from baseline models. The characteristic quanti-
ties obtained from the corresponding residual series are des-
ignated as Q0u,Q1u,Q2u,Q6u. The characteristic quantities
obtained using the baseline data records are designated as
QVV (V = 0,1,2,6). The first subscript designates the model
employed, while the second the aircraft state corresponding to
the currently used response signal(s). The design of a binary
statistical hypothesis test is generally based on the probabil-
ities of type I (false alarm) and type II (missed faults) error
probabilities, represented by α and β , respectively.

The general workframe for fault detection and identification
via statistical time series methods is illustrated in Fig. 3. As
the flight commences, the current (unknown) signals are fil-
tered through a healthy model of the aircraft and the proper-
ties of residual sequences generated are statistically compared
with the nominal value (characteristic quantity) to determine
when a rotor failure takes place. Due to rotor failure, the air-
craft signals become non-stationary, until the controller com-
pensates for the fault. The variance of the signals is monitored

1A functional argument in parentheses designates function of a real vari-
able; for instance x(t) is a function of analog time t ∈ R. A functional argu-
ment in brackets designates function of an integer variable; for instance x[t]
is a function of normalized discrete time (t = 1,2, . . .).

to ascertain that they have reached stationary state as the sta-
tistical models for different rotor failures have been estimated
with fault-compensated signals. Next, these faulty signals are
filtered through the faulty models to identify which rotor has
failed by multiple binary hypothesis tests.

BASELINE MODELING OF HEALTHY AND
FAULTY STATES

The aircraft signals for roll, pitch, and yaw generated via a
series of simulations of forward flight of the hexacopter under
turbulence (light, moderate and severe levels) for healthy and
different faulty states are used in the model identification stage
that subsequently drives the fault detection and identification
tasks.

In the present scenario, the data sets obtained are in the form
of response-only signals with the excitation x[t] assumed to be
a white (uncorrelated) signal induced by atmospheric turbu-
lence. That is γxx[τ] = 0 for τ 6= 0, where γxx denotes the Au-
toCorrelation Function (ACF) and τ the ACF time lag, given
as:

γxx[τ] = E{x[t] · x[t + τ]} (3)

Parametric Identification via Time Series Models

Scalar AR Identification Method A single signal ob-
tained from a healthy flight simulation is parametrized to
form a scalar (univariate) AutoRegressive (AR) time series
model (Ref. 16):.

y[t]+
na

∑
i=1

ai · y[t− i] = e[t], e[t]∼ iid N (0,σe
2) (4)

with ai and na designating the AR parameters and model
orders, respectively; iid stands for identically independently
distributed, and N (·, ·) denotes a univariate normal distribu-
tion with the indicated mean and variance, respectively. In
Eq. 4, e[t] coincides with the one-step-ahead-prediction error
and is also referred as the model residual or innovations se-
quence (Refs. 16, 17).

The identification of parametric time series models is com-
prised of two main tasks: parameter estimation and model
order selection. The parameters for the AR model can been
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Fig. 3: General workframe of statistical time series methods for fault detection and identification.

estimated by minimization of the Least Squares (LS) criterion
(Refs. 17, 18), whereas the model order selection is achieved
based on the examination of the Bayesian Information Crite-
rion (BIC) (Refs. 17,18) (Eq. 5) and Residual sum of Squares
over Signal Sum of Squares Criterion (RSS/SSS) (Eq. 6). The
former is a statistical criterion that penalizes model complex-
ity (order, and hence the number of free parameters) as a coun-
teraction to a decreasing model fit criterion. The latter deter-
mines the predictive capability of the model.

BIC = lnσ
2
e +(d · lnN)/N (5)

RSS/SSS =
∑

N
t=1 e[t]2

∑
N
t=1 y[t]2

(6)

In Eq. 5, σ2
e is the variance of the residuals, d denotes the

number of parameters to be estimated for the model and N
denotes the number of samples used for estimation.

Vector AR Identification Method Vector AutoRegressive
(VAR) models employ s-dimensional signals, i.e., the aircraft
states in the present study, for multivariate (s-variate) time se-
ries modeling (Refs. 19, 20). Though they bear striking re-
semblance to their univariate or scalar counterparts, they have
a much richer structure and typically require multivariate sta-
tistical decision making procedures. The univariate response
signal y[t] of Eq. 4 is replaced by an s-variate vector y[t]2,
hence the VAR(na) model is of the following form:

y[t]+
na

∑
i=1
Ai ·y[t− i] = e[t]

with e[t]∼ iid N (0,Σ), Σ = E{e[t] ·eT [t]}
(7)

with Ai (s× s) designating the i-th AR matrix, e[t] (s× 1)
the model residual sequence characterized by the non-singular
and generally non-diagonal covariance matrix Σ, n the AR

2Bold–face upper/lower case symbols designate matrix/column–vector
quantities, respectively. Matrix transposition is indicated by the superscript T .

order, and E{·} statistical expectation. Given the attitude sig-
nal measurements y[t] (t = 1,2, . . . ,N), the estimation of the
VAR parameter vector θ comprising all AR matrix elements
(θ = vec([A1 A2 . . . Ana])) and the residual covariance ma-
trix (Σ) is accomplished via linear regression schemes based
on minimization of the Ordinary Least Squares (OLS) or
the Weighted Least Squares (WLS) criterion (Refs. 17, 18).
The modeling procedure involves the successive fitting of
VAR(na) models for increasing AR order, na, until an ade-
quate model is achieved. The model order is chosen by re-
placing the variance of residuals for the scalar case by the
trace of the residual covariance matrix,Σ (Ref. 9).

RESIDUAL BASED FAULT DETECTION
AND IDENTIFICATION

For fault detection and identification, model residual based
methods use functions of the residual sequences which are ob-
tained by driving the current signal(s) (Zu) through the models
estimated in the baseline phase for the healthy aircraft (Mo)
and different fault types (M1,M2,M6). The key idea is that the
residual sequence obtained by a model that truly reflects the
current state of aircraft possesses certain distinct properties
which are distinguishable from that obtained from the other
models.

Let MV designate the model representing the structure in
its V state (V = 0,1,2,6), where the subscript “0” denotes
healthy state, and 1,2,6 designate the rotor which has failed
in the faulty state. The residual series obtained by driving
the current signal(s) (Zu) through each one of the aforemen-
tioned models are designated as e0u[t],e1u[t],e2u[t],e6u[t] and
are characterized by variances σ2

0u,σ
2
1u,σ

2
2u,σ

2
6u, respectively.

The characteristic quantity can be the variance or the white-
ness of the residual sequence as discussed in the following
sections. The first subscript designates the model employed,
while the second designates the aircraft state corresponding
to the currently used response signal(s). The characteristic
quantities obtained from the corresponding residual series are
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designated as Q0u,Q1u,Q2u,Q6u. The characteristic quanti-
ties obtained using the baseline data records are designated as
QVV (V = 0,1,2,6).

Residual Variance Method

In this method, the characteristic quantity used for fault detec-
tion is the residual variance (Ref. 8). Fault detection is based
on the fact that the residual series e0u[t], obtained by driv-
ing the current signals Zu through the model M0 (correspond-
ing to the healthy state) should be characterized by variance
σ2

0u = σ2
00 which becomes minimal if and only if the current

state of the aircraft is healthy (Zu = Z0). Fault detection is
based on the following hypothesis testing procedure:

H0 : σ2
0u ≤ σ2

00 (null hypothesis – healthy aircraft)
H1 : σ2

0u > σ2
00 (alternate hypothesis – rotor failure)

(8)

Under the null (H0) hypothesis, the residuals e0u[t] are (just
like the residuals e00[t]), iid Gaussian with zero mean and
variance σ2

00. Hence the quantities Nu · σ̂2
0u/σ2

00 and (N0 −
d) · σ̂2

00/σ2
00 follow central χ2 distribution with Nu and No−d

degrees of freedom, respectively (as sums of squares of in-
dependent standardized Gaussian random variables)3. N0 and
Nu designate the number of samples used in estimating the
residual variance in the healthy and current cases, respectively
(typically N0 = Nu = N), and d designates the dimensionality
of the estimated model parameter vector. Nu and N0 should
be adjusted to Nu− 1 and N0− 1, respectively, if each esti-
mated mean is subtracted from each residual sequence. Con-
sequently, the following statistic follows a Fischer distribu-
tion (denoted by F) with (Nu,N0− d) degrees of freedom as
the ratio of two independent and normalized χ2 random vari-
ables (Ref. 8):

Under H0 : F =

Nu σ̂2
0u

Nu σ2
00

(N0−d) σ̂2
00

(N0−d) σ2
00

=
σ̂2

0u

σ̂2
00

(9)

The following hypothesis test is thus constructed at the α type
I (false alarm) risk level:

F ≤ f1−α(Nu,N0−d) =⇒ H0 accepted (healthy aircraft)
Else =⇒ H1 accepted (rotor failure)

(10)
where, f1−α(Nu,N0−d) designates the corresponding Fischer
distribution’s (1−α) critical point.

Fault identification may be similarly achieved via pairwise
tests of the form:

H0 : σ2
Xu ≤ σ2

XX (aircraft under Rotor X failure)
H1 : σ2

0u > σ2
00 (aircraft not under Rotor X failure)

(11)

3A hat designates estimator/estimate of the indicated quantity; for in-
stance σ̂ is an estimator/estimate of σ .

Residual Uncorrelatedness Method

This method is based on the fact that the residual series eou[t],
obtained by driving the current signals (Zu) through the model
(M0), is uncorrelated (white) if and only if the aircraft is cur-
rently in its healthy condition (Ref. 8). Fault detection is per-
formed by the following hypothesis testing:

H0 : ρ[τ] = 0 (null hypothesis – healthy aircraft)
H1 : ρ[τ] 6= 0 (alternate hypothesis – rotor failure)

(12)
where ρ[τ] is the normalized autocorrelation function
(ρxx[τ] = γxx[τ]/γxx[0]) of the residual sequence e0u[t].

Therefore, the characteristic quantity for fault detection by
this method is

[
ρ[1] ρ[2] ρ[3] . . . ρ[τ]

]T . For this method,
r is the design variable for the statistical test, which denotes
the maximum lag in time (τ) for which the normalized ACFs
are being accounted for. Under the null hypothesis (H0), the
residuals e0u[t] are iid Gaussian with zero mean and the test
statistic χ2

ρ follows a χ2 distribution with r degrees of free-
dom, given as:

Under H0 : χ
2
ρ = N(N +2) ·

r

∑
τ=1

(N− τ)−1 · ρ̂[τ]2 ∼ χ
2(r)

(13)
where ρ̂[τ] denotes the estimator of ρ[τ].

Statistical decision making is achieved by the following test
for α (false alarm) risk level:

χ2
ρ ≤ χ2

1−α
(r) =⇒ H0 is accepted (healthy aircraft)

Else =⇒ H1 is accepted (rotor failure)
(14)

where χ2
1−α

(r) denotes the χ2 distribution’s 1− α critical
point.

Fault identification is achieved by similarly examining which
one of the eVu[t](V = 1,2,6) residual series is statistically un-
correlated.

RESULTS AND DISCUSSION

Data Generation

Flight simulation for the hexacopter was performed at 5 m/s
forward speed with under various turbulence levels according
to the Dryden model. Figures 4 through 6 show attitude time
histories for the hexacopter at 5 m/s forward flight, for cases
of rotor 1 failure (red) and rotor 2 failure (green). For the
simulation results presented, rotor failure (of either rotor 1 or
2) occurs at t = 10 s, indicated by the vertical dashed line.

From Fig. 4, it may be observed that rotor 1 failure results
in a larger deviation in the pitch attitude than in the case of
rotor 2 failure. In the case of front rotor failure, the hex-
acopter pitches down without any substantial change in roll
angle (Fig. 5) because the loss of rotor 1 thrust does not sig-
nificantly affect the aircraft roll equilibrium. However, in the
case of side rotor failure (rotor 2) both the pitch (Fig. 4) and
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Fig. 4: Indicative pitch attitude signals for an airspeed of 5
m/s. The dashed vertical line indicates the time instant of the
fault initiation.

roll (Fig. 5) attitudes change and the roll attitude compensa-
tion is observed to be underdamped. In Fig. 6, the heading of
the aircraft is observed to deviate in different directions with
the failure of rotor 1 compared to rotor 2. This is due to the
different rotor spin directions, and consequently the direction
of the hub torque generated by each rotor.

It should be noted here that the signals show a transient re-
sponse immediately after rotor failure followed by a fault-
compensated steady state response where they become sta-
tionary again. Fig. 7 shows the variance of signals of win-
dow length 10 s, updated every 0.1 s. As the transients pass,
the signal variance reduces considerably and becomes con-
stant. This fact has been utilized to check whether steady
state has been reached or not. The threshold values of vari-
ances for the roll, pitch and yaw signals, below which the sig-
nals are considered to have reached steady state, have been
evaluated in the baseline phase as the maximum variances
for each signal encountered in the steady state (20s after in-
stant of rotor failure) for 20 sets of simulation data, for each
type of rotor failure and severe level of turbulence. The
value of roll, pitch, and yaw signals threshold variances are
1× 10−3rad2(3.286 deg2), 1× 10−4rad2(0.329 deg2) and
3×10−4rad2(0.986 deg2), respectively.

Due to different controller effort for the various levels of tur-
bulence, the aircraft state signals do not show discernible
change in characteristics with respect to the healthy dynam-
ics, and transients due to failure and failure compensation un-
der light and moderate levels of turbulence. Similar trends
are observed for a flight speed of 10 m/s; the fault detection
and identification process follows the same steps for any other
speed. In the present study, indicative results for a single flight
speed of 5 m/s are presented, results from various speeds will
be presented in subsequent publication.
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Fig. 5: Indicative roll attitude signals for an airspeed of 5 m/s.
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Fig. 6: Indicative yaw attitude signals for an airspeed of 5 m/s.
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Fig. 7: Variance evolution of the roll, pitch and yaw signals.
The dashed vertical line indicates the time instant of the fault
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Parametric Model Identification

Scalar AR Model Identification Scalar (univariate) para-
metric identification of the aircraft dynamics has been based
on 20 s (N = 2000 samples) of pitch signal obtained from
the healthy aircraft flight at 5 m/s under severe levels of tur-
bulence. In the present case, the response-only signals have
been obtained from ambient excitation due to atmospheric
turbulence (assumed to be uncorrelated based on the Dryden
specifications). The model parameters and model order, ai
and na (Eq. 4), respectively, need to be estimated so that the
model properly represents the dynamics of the system under
healthy conditions. The modeling strategy consists of succes-
sive fitting of AR(na) models until a suitable model with least
amount of complexity (number of parameters) and best fit is
selected.

Model order selection is based on a combination of Bayesian
Information Criteria (BIC) (Eq. 5) and Residual sum of
squares normalized by Signal sum of squares (RSS/SSS) cri-
teria (Eq. 6) as shown in Fig. 8. A model order of na= 6 yields
the minimum BIC and this model is represented as AR(6).
Monitoring the stabilization of RSS/SSS criteria gives the
point where increasing model order does not result further in
reduction of prediction errors. This order exhibits a very low
RSS/SSS value of 1.6×10−5% demonstrating accurate iden-
tification and excellent dynamics representation of the healthy
aircraft pitch signal at 5 m/s and under severe turbulence. The
number of parameters estimated for the AR(6) model results
in a Samples per Parameter (SPP) ratio of 333.33 ( N

d ).

The model was validated based on the fact that the model
matching the current state of the system should generate a
white (uncorrelated) residual sequence. Therefore, a healthy
pitch signal has been generated from a different realization of
severe turbulence. The autocorrelation function of the residual
sequences obtained from driving the current signal (healthy)
through the model has been observed to be white with 95%
confidence (confidence intervals shown in blue), as shown
Fig. 9. Next, pitch signals generated under front and side
rotor failures have been passed through the same model to
generate residual sequences. Figure 9 shows that the resid-
ual sequences for different failure cases are serially correlated,
demonstrating that the dynamics of the aircraft have changed
from that of the healthy state, due to failure.

A similar study has been repeated with the roll and yaw sig-
nals to estimate scalar AR models for the healthy aircraft and
different rotor failures, the details of which are given in Ta-
ble 2. It should be noted that the models for different rotor
failures are estimated with the stationary signals post fault
compensation. A comparison of these models using various
residual-based fault identification methods will be addressed
with respect to their accuracy.

Vector AR Model Identification Vector (multivariate) para-
metric identification of the healthy aircraft has been based on
20 s (N = 2000 samples at sampling frequency 100 Hz) data
sets for the roll, pitch, and yaw signals without any external
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Fig. 8: Scalar AR model order selection criteria.

-0.5

0

0.5

 

Healthy aircraft

0 10 20 30 40 50

-0.5

0

0.5

R
e

s
id

u
a

l 
A

u
to

c
o

rr
e

la
ti
o

n

Front rotor failure 

0 10 20 30 40 50

-0.5

0

0.5
Side rotor failure

0 10 20 30 40 50

Lag

Fig. 9: Autocorrelation function of the pitch residual for the
healthy and considered faulty rotor cases.

excitation (ambient excitation due to turbulence assumed to
be white) generated from forward flight simulation at 5 m/s
under severe turbulence. The model identification follows the
same procedure as the scalar model to estimate the parameters
θ and select a model order na which can accurately represent
the dynamics of the healthy aircraft.

The model order selection based on the BIC and RSS/SSS cri-
teria yields yields a model order of 4, represented as VAR(4).
The SPP for the model is 166.67 as the number of estimated
parameters for VAR(4) is 36 (as the Ai parameter matrix is
a 3× 3 matrix with i = 1,2,3,4 for model order of 4). The
roll, pitch, and yaw signals of the healthy aircraft flying at 5
m/s for different severe turbulence realization has been driven
through the model estimated to generate residuals. The auto-
correlation and cross-correlation functions of the three resid-
ual sequences generated are observed to be white with 95%
confidence. For signals generated for different faulty states,
the residuals are found to be correlated.
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Table 2: Model identification summary results.

Aircraft Model Signals Model Parameters SPP
State type used order estimated

H
ea

lth
y

A
ir

cr
af

t Roll AR(6) 6 333.33
Scalar AR Pitch AR(6) 6 333.33

Yaw AR(5) 5 400
Vector AR Roll,Pitch,Yaw VAR(4) 36 166.67

R
ot

or
1

Fa
ilu

re

Roll AR(6) 6 333.33
Scalar AR Pitch AR(5) 5 400

Yaw AR(5) 5 400
Vector AR Roll,Pitch,Yaw VAR(6) 54 111.11

R
ot

or
2

Fa
ilu

re

Roll AR(6) 6 333.33
Scalar AR Pitch AR(7) 7 285.71

Yaw AR(7) 7 285.71
Vector AR Roll,Pitch,Yaw VAR(8) 72 83.33

R
ot

or
6

Fa
ilu

re

Roll AR(6) 6 333.33
Scalar AR Pitch AR(6) 6 333.33

Yaw AR(5) 5 400
Vector AR Roll,Pitch,Yaw VAR(6) 54 111.11

Similarly, vector (multivariate) parametric identification of
different rotor failure models have been based on 20 s (N =
2000 samples at sampling frequency 100 Hz) of steady state
aircraft attitude signals after controller compensation obtained
from forward flight simulation at 5 m/s under severe turbu-
lence. Typically, the roll, pitch, and yaw signals fully stabilize
with different dynamics than the healthy state due to controller
action after rotor failure. The details of the estimated models
for the healthy and all faulty states of the aircraft using the
three aircraft attitude signals are given in Table 2.

Scalar Residual based Fault Detection and Identification

The current (unknown) pitch signals (5 m/s under severe tur-
bulence) were driven through the identified healthy AR model
to generate residual sequences. Fault detection was attempted
through the characteristic quantities which are functions of the
residual sequences, as previously discussed.

Similarly, in event of a rotor failure, fault identification was
done via generating residuals from each of the rotor failure
models and using their properties for decision making through
multiple binary hypothesis tests. In the current study, the fault
cases considered are failure of rotor 1, 2 and 6. Therefore,
there are 3 fault hypothesis, and 3 hypothesis tests have to be
carried out simultaneously.

Residual Variance Method Post online fault detection as
discussed in (Ref. 6), the variance of the signals is monitored
until steady state is reached. For fault identification, the cur-
rent fault-compensated pitch signal of length 20 s (N = 2000
samples) updated every 1s is filtered through the scalar mod-
els identified with pitch signals of rotor failure 1,2 and 6. The
residual variances denoted as σ2

1u,σ2
2u and σ2

6u, respectively,
are statistically compared with the nominal values, namely
σ2

11,σ2
22 and σ2

66, estimated in the baseline phase. Indicative
failure identification results for a single window is presented

in Fig. 10. If the test statistic of the residual obtained from M1
lies below the critical limit constructed at the α (false alarm)
risk level of 10−12, and exceeds for the residuals obtained
from the other two models (M2 and M6) the fault is correctly
identified as rotor 1 failure. Fault identification follows for
the other types of failure in similar way. However, if the test
statistics obtained from two or more models lie below the crit-
ical limit, then confusion between rotor failures is implied. If
all the test statistics exceed the critical limit, no decision is
made.

This method faces significant challenges for fault identifica-
tion as it is not able to provide an accurate fault classification
between all three rotor failures. This can be attributed to the
fact that the pitch dynamics post failure have been compen-
sated in similar fashion for all rotor failures by the controller,
as discussed in (Ref. 6).

Residual Uncorrelatedness Method After the fault is com-
pensated for by the controller, pitch signals of length 20 s
(N = 2000 samples), updated every 1 s have been filtered
through faulty models M1,M2, and M6 to generate residuals
e1u[t],e2u[t] and e6u[t], respectively. The autocorrelation func-
tion of the residual sequences with maximum lag τ = 30 has
been considered as the characteristic quantity used to classify
faults. The critical limit of a χ2 distribution with 30 degrees
of freedom for the statistical hypothesis testing has been con-
structed at the α (false alarm) risk level of 10−3.

The results obtained from a single window of 20 s for different
rotor failures have been shown in Fig.10. It can be observed
that when pitch signal from rotor 1 failure is filtered through
M1, the residuals are uncorrelated, and they are correlated if
obtained from models M2 and M6, as evident for the test statis-
tic being below the critical limit in the former, and exceeding
it in the latter two cases. In the case of the pitch signals for
side (2 and 6) rotor failures, the residuals are correlated when
filtered by M1, signifying a clear distinction from front (1) ro-
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Fig. 10: Indicative pitch residual variance based fault identifi-
cation results. The dashed black horizontal line indicates the
statistical threshold at the α = 10−12 risk level.

tor failure. But, when filtered through models M2 and M6, they
are not able to distinguish between the two side rotor failures,
as the test statistics lie below the critical limit for both cases.
This may be due to the fact that the pitch signals were com-
pensated in different fashion for front and side rotor failures.

It should be noted that fault detection and identification is
solely based on the response signals; in future work, the con-
troller signals will be also taken into account to enhance the
performance of the methods while taking into account the
fault compensation characteristics of the controller.

Vector Residual based Fault Detection and Identification

The current (unknown) signals (roll, pitch and yaw, in that
order), when driven through the VAR(4) model estimated
in the “Vector AR Model Identification” section, yield three
sets of residual sequences. The residual based fault detec-
tion is performed via the statistical comparison of each char-
acteristic quantity obtained via the current residual sequence
with the corresponding quantity obtained via the use of the
baseline signals (signal used to estimate the healthy VAR
model) and corresponding residual series through the base-
line VAR model. In other words, the characteristic quantity
obtained from the current roll residual sequence is compared
to the baseline quantity obtained from the roll residual se-
quence. Therefore, the statistical hypothesis testing is per-
formed thrice for a particular time window (duration of signal
measured in number of samples).

For fault identification, the fault compensated signals are fil-
tered through the 3 rotor failure models to generate 3 sets of
residual sequences comprising of roll, pitch and yaw resid-
uals. Binary hypothesis tests are designed on the properties
of these residuals to decide whether the current faulty resid-
uals are statistically similar to the which nominal rotor fail-
ure residuals (estimated during the baseline phase by filtering
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Fig. 11: Indicative pitch residual uncorrelatedness based fault
identification results. The dashed black horizontal line indi-
cates the statistical threshold at the α = 10−3 risk level.

signals for a rotor failure through that particular rotor failure
model).

Residual Variance Method After fault detection the vari-
ance of the signals are monitored to ascertain that steady state
is reached. Post fault-compensation, the signals of length
20 s (N = 2000 samples), updated every 1 s have been fil-
tered through the models for rotor failure, M1,M2, and M6 to
find the residual variances σ2

1u,σ2
2u, and σ2

6u, respectively (for
roll,pitch and yaw residuals), and compare statistically to the
baseline residuals σ2

11,σ2
22, and σ2

66. The statistical hypothe-
sis test is designed at the α (false alarm) risk level of 10−8 to
minimize the confusion between the various rotor failures.

Indicative results for a single signal window is presented in
Fig. 12. If all the test statistics for the roll, pitch, and yaw
residual sequences obtained from model M1 are within the
critical limit, then the fault is correctly classified as rotor 1
failure, as indicated in the left sub-figure. If any of them ex-
ceeds the critical limit, it is implied that the current faulty state
is not related to rotor failure 1. Similarly, correct fault iden-
tification has been made with residuals obtained from models
M2 and M6. If the test statistics of the residuals obtained from
more than one model lie below the critical limit, it implies
that there is confusion between those types of failures. Con-
versely, if all the test residuals from all the models exceed the
critical limit, no decision is made on the type of rotor failure.
As evident from the design of the test, multiple decisions or
no decision is possible for a single window of the signals.

Residual Uncorrelatedness Method After the fault is com-
pensated for by the controller, signals of length 20 s (N =
2000 samples), updated every 1 s have been filtered through
faulty models M1,M2, and M6 to generate residual sequences
e1u[t],e2u[t], and e6u[t], respectively, each containing roll,
pitch, and yaw residuals. The autocorrelation function of
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Model: Rotor 2 failure
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Model: Rotor 6 failure
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Fig. 12: Indicative residual variance based fault identification results. The dashed black horizontal line indicates the statistical
threshold at the α = 10−8 risk level.
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Model: Rotor 2 failure
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Model: Rotor 6 failure
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Fig. 13: Indicative residual uncorrelatedness based fault identification results. The dashed black horizontal line indicates the
statistical threshold at the α = 10−3 risk level.

each component of the residual sequences with maximum lag
τ = 50 has been considered as the test statistics to classify
faults. Since the computation time required to classify failure
is about 0.3 s, the window update interval is kept at 1 s.

The results obtained from a single window of 20 s are shown
in Fig.13. Figure on the left shows the residuals e1u[t] are
uncorrelated (lies below (1−α) critical limit of a χ2 distri-
bution with 50 degrees of freedom). This signifies that the
model (M1) represents the dynamics of current state correctly
and hence the fault is classified as failure of rotor 1. The mod-
els which do not represent the current aircraft state dynamics,
have correlated residuals (exceed the critical limit). Similarly,
the middle and right figures, show correct identification of the
failure for rotors 2 and 6, respectively. Note that the roll statis-
tic (blue bar) shows a clear distinction between the front and
side rotor failure cases.This is due to the fact that roll does
not change significantly for front rotor failure as captured by
model M1, contrary to the case of side rotor failure. Also, the
front rotor failure signals show a substantial pitch correlation
compared to the other side rotor failure, which signifies that

controller compensated pitch dynamics is significantly differ-
ent in front rotor failure from side rotor failure, as previously
discussed in Ref. 6.

Comparative Assessment of Different Models and Fault
Identification Methods

It has been observed that both scalar and vector statistical
time series methods have shown remarkable results in effec-
tively detecting faults, with the vector methods achieving im-
proved performance with respect to false alarms, missed faults
and distinguishing between healthy and faulty compensated
states (Ref. 6). This can be attributed to the fact that vector
models being multivariate models can capture the relationship
between all three aircraft output states. Similarly for the task
of fault identification, a similar difference in performance be-
tween these two types of models is observed.

Table 3 outlines the type I risk level (α) selected for
each residual based fault identification method based on the
achieved effectiveness and robustness. If α is not properly
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Table 3: Parameters used for various fault identification methods

Model type Fault identification method α level
Scalar AR Residual variance 10−6

Roll Residual whiteness 10−3

Scalar AR Residual variance 10−12

Pitch Residual whiteness 10−3

Scalar AR Residual variance 10−12

Yaw Residual whiteness 10−3

Vector AR Residual variance 10−8

Roll, Pitch, Yaw Residual whiteness 10−3

α: Type I (false alarm) error probability level

adjusted, the methods may exhibit decreased accuracy and ro-
bustness with respect to the probability of false alarms and
misclassification faults. Hence, it is advised to make an initial
investigation on the number of false alarms for different levels
of turbulence using several healthy data sets. Then, misclas-
sification errors may be checked with data corresponding to
various rotor failure states. Moreover, for robust performance
of parametric methods, a very small value of the type I risk (α)
is often required. This is due to the fact that the stochastic time
series models (like AR, ARMA, ARX, state space, etc.) used
for modeling the dynamics are still incapable of fully captur-
ing the experimental, operational and environmental uncer-
tainties that the aircraft may be subjected to. Therefore, to
“compensate” for the lack of effective uncertainty modeling,
a very small α is often selected. Another important factor is
the number of samples needed for hypothesis testing, since
the chance of missing faults depends upon sample size.
Table 4 summarizes the accuracy of the different methods and
models for fault identification aggregated over severe, mod-
erate, and low levels of turbulence. Each column shows the
percentage of time the signals from a particular rotor failure
has been classified as rotor (1) / rotor (2) / rotor (6) failure.
Scalar AR models estimated with fault-compensated station-
ary signals for each type of rotor failure, namely rotor 1, 2,
and 6, failures are mostly rendered ineffective in fault iden-
tification as shown in Table 4. AR models identified based
on roll signals can only distinguish between front rotor (1)
and side rotor (2 and 6) failures using the residual uncorre-
ladtedness method with accuracy of 96% due to difference in
fault dynamics (see discussion in “Data Generation”). The re-
maining scalar AR methods for classifying rotor failures show
considerable confusion between all 3 rotor failures.
Vector AR models estimated for different rotor failures model
the relationship between the fault-compensated roll, pitch and
yaw signals. Hence, they have the potential to perform bet-
ter than their scalar counterparts in fault identification due to
the fact the the signal inter-dependencies and cross-correlation
structure is taken into account.
Vector AR models with residual uncorrelatedness based deci-
sion making perform excellent in fault identification. It has
been observed that signal length 20 s gives failure classifica-
tion accuracy of 99.6%, however the accuracy reduces signifi-
cantly with shorter signal lengths, with the confusion between

rotor 2 and 6 failures (classified as both failures simultane-
ously) up to 56% when signal lengths of 5 s are used for online
monitoring. On the other hand, the residual variance method,
though able to distinguish between front and side rotor failure
with an accuracy of 100%, suffers from considerable confu-
sion (31.26%) and inability to make a correct decision (80%)
in the case of side rotor (2 or 6) failures.

The residual uncorreladtedness method compares a function
of the residual autocorrelation for a properly defined lag value
τ , specified by the user, and holds more information com-
pared to residual variance method which only compares the
variance of the signals with the nominal values. It is possible
for the variance values to be statistically similar for several
fault types. However, autocorrelation function can take posi-
tive and negative values for different lags and it being similar
for different rotor failures is improbable due to the fact that the
dynamics of the system changes in markedly different way for
different rotor failures. This fact has been exploited in another
study (Ref. 7), where the difference between the correlation
functions of the signal residuals obtained from VAR model of
healthy aircraft for different rotor failures, have been utilized
for more accurate fault identification.

CONCLUSIONS

This paper presented the application and assessment of several
residual-based statistical time series methods for online rotor
fault detection and identification in multicopters under dif-
ferent levels of atmospheric turbulence and uncertainty. De-
velopment of various types of statistical time series models
(scalar and vector) to represent healthy and post failure fault
compensated aircraft dynamics have been discussed. Differ-
ent fault identification methods coupled with the models es-
timated have been compared with respect to their accuracy
and robustness. The important conclusions from the study are
summarized below.

• Statistical time series methods for rotor fault detection
and identification in multicopters achieve effective de-
tection based on (i) ambient (white) excitation and air-
craft state (scalar or vector) signals, (ii) statistical model
building, and (iii) statistical decision making under un-
certainty.
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Table 4: Fault identification accuracy of different methods

Model type Fault identification method Signals for Failure of
Rotor (1) Rotor (2) Rotor (6)

Scalar AR Residual Variance 97.54/100/99.36 0/100/100 0/100/100
Roll Residual Whiteness 98.78/0.23/1.19 0/97.06/99.20 0/97.38/97.93
Scalar AR Residual Variance 100/0/0 100/100/100 100/100/100
Pitch Residual Whiteness 87.70/7.38/10.95 56.90/98.25/98.96 86.18/98.57/98.89
Scalar AR Residual Variance 100/14.76/0.32 100/94.52/59.04 100/99.28/95.95
Yaw Residual Whiteness 77.77/46.02/42.85 58.77/49.04/45.47 88.09/60.79/56.58
Vector AR Residual Variance 100/0/0 0/21.75/0 0/31.26/33.49
Roll,Pitch,Yaw Residual Whiteness 100/0/0 0/99.62/0.02 0/0/99.68

Identification as Rotor (1)/ Rotor (2)/ Rotor (6) failure in percentage
for all levels of turbulence out of 20 datasets each

• Both parametric methods have great sensitivity to faults
and accuracy of detection when fault occurs in real
time, with the vector methods achieving improved per-
formance with respect to false alarms, missed faults and
distinguishing between healthy and faulty compensated
states.

• Fault identification by statistical time series method re-
quires multiple models for different rotor failures. Deci-
sion making takes longer time as the hypothesis tests in-
crease with number of fault classes and types. Also, the
accuracy of this method depends on the length of current
signals (number of samples). Using longer signals (and
thus greater sample size) has been observed to result in
improved accuracy.

• Fault identification by scalar methods has shown consid-
erable confusion in distinguishing between the various
rotor failures. Roll signals via the residual uncorrelated-
ness method provide good distinction between front and
side rotor failures, but have been proven worse for miss-
ing front rotor failure in detection phase.

• Fault identification via the use of vector models and the
residual uncorrelatedness method achieves the best fault
classification accuracy. The residual variance method
achieves good distinction between the front and side ro-
tor failures, but is unable to classify between the two side
rotor failures.

• In the future, the modeling will be expanded to Func-
tionally Pooled (FP) model based methods that will in-
clude various forward flight speeds and gross weight of
the aircraft into a single ’global’ model for complete ro-
tor fault detection (abrupt failure and continuous degra-
dation), identification.
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