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ABSTRACT
This paper presents a data-driven approach towards time-optimal trajectory generation for Unmanned Aerial Vehicles
(UAV’s) using a machine-learned trajectory generation mechanism for point-to-point time-optimal trajectories on-the-
fly. To train this machine-learned black box trajectory generator off-line, a model-based optimization problem is first
constructed for point-to-point time-optimal trajectory generation, with physical constraints on inputs, states, and rates.
The formulated optimization problem is then solved off-line for a range of initial and terminal flight states to generate
point-to-point data-sets that consist of the optimal state and input trajectories. This information is compressed by
parameterizing the input and state trajectories using a set of basis functions. This data is then used to train the neural
network-based trajectory planner. The output of the neural network is the basis function coefficient sets for the state and
input trajectories (and the total flight time) which can then be used to reconstruct the flight trajectory. Once the neural
network is trained, the data-driven on-board trajectory generator is ready to be deployed on the UAV for on-board
planning. This approach is demonstrated for two scenarios: (1) the input to the neural network being the initial and
terminal flight states and (2) the input to the neural network being initial and terminal flight states as well as physical
constraints. To validate the performance of the machine-learned black-box trajectory generator, the root mean squared
error between the neural network generated trajectories and the trajectories obtained from solving the optimization
problem directly is statistically evaluated. These trajectories are also tested for violation of path constraints (which are
not included explicitly in the training or input to the black box planner) by evaluating the mean constraint violation for
each path-constrained variable.

INTRODUCTION

Trajectory planning is a key component of all guidance, nav-
igation and control systems for autonomous unmanned aerial
vehicles (UAV’s). For mission planning, generally a set of
waypoints are generated first, following which waypoint-to-
waypoint trajectory planning for UAV’s can be done by either
parameterizing the kinematic variables (Ref. 1). Alternatively,
the trajectories can be generated from an artificial potential
field to guide the UAV path generation (Ref. 2). More re-
cently, waypoint-to-waypoint trajectory generation has been
posed as an optimization problem; for example as minimum-
snap trajectory generation in (Ref. 3) and the time-optimal
path generation problem presented in (Ref. 4).

Optimization-based trajectory generation methods are attrac-
tive since they can handle constraints and generate optimal
paths based on simplified dynamics of the UAV. These meth-
ods use (1) a prescribed cost function to be minimized (either
time of flight, or snap or jerk of the trajectory), (2) a model of
the dynamics of the UAV, and (3) physical constraints on in-
puts and states, and (4) path constraints created by obstacles,
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etc. to generate feasible trajectories from the initial state to
the terminal state. However, they can often be computation-
ally expensive and are difficult to solve on the fly.

On the other hand, machine-learning based methods have seen
significant interest over the past decade for path planning for
robotics. (Ref. 5) presents a survey of machine learning ap-
proaches to robotic path-planning. These planning algorithms
typically focus on determining sequences of maneuvers in
complex environments while following a high-level task com-
mand. The mechanisms for obtaining the policies or path
plans for the high-level task range from reinforcement learn-
ing to search over graphs. In (Ref. 6), reinforcement learning
is applied to approximate the state value function of a UAV
with a suspended load, which aims to determine a swing-free
trajectory. In (Ref. 7), machine learning techniques are used
to identify the obstacles for UAV flights, which further en-
ables a two-layer obstacle avoidance algorithm to avoid ob-
stacles with minimal effort. In (Ref. 8), a neural network is
constructed to predict the trajectory of a small UAV under var-
ious wind conditions. In (Ref. 9), a Learning Automata (LA)
machine learning technique is used to tune the weights of the
Model Predictive Control (MPC) algorithm, which is used to
achieve obstacle avoidance trajectory planning for the quad-
copter. In (Ref. 10), a supervised feedforward neural network
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is trained offline to provide time allocation of minimum snap
trajectories for quadcopter, which greatly reduced the com-
putational time of onboard implementation. These machine-
learning algorithms either do not address the low level dynam-
ics of UAV and the multiple constraints that must be satisfied
for planning UAV flight paths, or can not be applied to solve
the free end time optimization problem (i.e. time-optimal tra-
jectory). Hence, they may not be well-suited for waypoint-to-
waypoint UAV trajectory planning.

In this paper, we present a machine learning approach to tra-
jectory generation for UAV’s. The key idea here is to train
a black box machine-learned model using data obtained from
solving the trajectory optimization problem offline for a large
number of scenarios. The machine-learned trajectory planner
can then be used to generate trajectories on-the-fly at a much
lower computational cost than solving the optimization prob-
lem online. Towards this goal, we first construct the typical
optimization problem for time-optimal trajectory generation
and solve it off-line for a range of initial and terminal flight
states to create the trajectory data-sets necessary to train the
machine-learned model. Next, we compress the information
in the planned trajectories by parameterizing them using a set
of basis functions. These parameters are then used to train
a neural network based model. Once trained, the neural net-
work model is validated against out-of-sample data to study
(1) the quality of the fit of trajectories generated by the ma-
chine learned trajectory planner and (2) whether constraints
imposed by the original optimization problem are satisfied by
the trajectories generated by machine-learned trajectory plan-
ner.

PROBLEM STATEMENT

As is shown in Fig.(1), the typical mechanism for trajec-
tory generation for quadcopter is to formulate an optimization
problem. The dynamics, initial/terminal boundary conditions
and the physical capacity of the UAV are framed as constraints
that the solution trajectory (i.e. xxx∗(·) and uuu∗(·)) must satisfy.
This approach is based on a white-box model and guarantees
the rigorousness of the solution, however the nonlinear con-
strained optimization problem can be computationally expen-
sive to solve, and thus difficult to implement on-the-fly.

To address this, the trajectory generation method proposed in
this paper is based on a data-driven approach. Through an of-
fline machine learning process, the data collected from solv-
ing the optimization problem for a range of scenarios are used
to train a black-box model (e.g., a neural network) by seeking
for the optimal weight www and bias bbb for each neuron in the
network, which essentially creates a mapping from any ad-
missible initial state x0, terminal state x f and the constraints
X/U to the corresponding state and input trajectories xxx∗(·)
and uuu∗(·), respectively. With the black-box model trained
by sufficient number of different flight scenarios, the pro-
posed black-box algorithm can generate time-optimal trajec-
tories for different initial and terminal flight states with much
lower-computational cost that solving the optimization prob-
lem on-the-fly, for real-time trajectory planning.

OPTIMIZATION-BASED TRAJECTORY
GENERATION

In this section, we present the typical model-based approach
for generating time-optimal trajectory, which will be used to
generate training data for the data-driven trajectory generator.
We first present a simplified quadcopter dynamic model for
trajectory planning and then formulate the optimization prob-
lem based on this model.

Simplified Quadcopter Dynamic Model

For planning purposes, we assume the dominant forces acting
on the quadcopter to be the thrust T and the gravity mg. The
differential RPM input uψ generates the yawing moment. We
also assume that roll angle φ and pitch angle θ dynamics are
much faster than translational motion in north X , east Y , down
Z directions and the yaw angle ψ dynamics. Thus, we assume
φ and θ to be instantaneously achievable and thus function
as the input variables. With these assumptions, the simplified
quadcopter dynamics can be written as:

Ẍ =− T
m (cosφ sinθ cosψ + sinφ sinψ);

Ÿ =− T
m (cosφ sinθ sinψ− sinφ cosψ);

Z̈ = g− T
m cosφ cosθ ;

ψ̈ = uψ

(1)

Eq.(1) can be denoted as the general form ẋxx = fff (xxx,uuu) (shown
in Fig.(1)), where the state xxx = [X ,Y,Z,ψ, Ẋ ,Ẏ , Ż, ψ̇] and the
input uuu = [T,φ ,θ ,uψ ]. Note that these dynamics are differen-
tial flat as the input variables can be represented by:

T = m
√

Ẍ2 + Ÿ 2 +(g− Z̈)2;
φ = tan−1( −Ẍ sinψ+Ÿ cosψ√

(g−Z̈)2+(Ẍ cosψ+Ÿ sinψ)2
);

θ =− tan−1( Ẍ cosψ+Ÿ cosψ

g−Z̈ );
uψ = ψ̈

(2)

Eq.(2) indicates that the original nonlinear dynamics in Eq.(1)
can be transformed into equivalent linear dynamics: q̇qq=FFFqqq+
GGGwww, where qqq = [X ,Y,Z,ψ, Ẋ ,Ẏ , Ż, ψ̇]T and www = [Ẍ ,Ÿ , Z̈, ψ̈]T .
Note that the original state xxx and uuu can be uniquely deter-
mined by qqq and www by the smooth mappings xxx=Nx(qqq) and uuu=
Nu(qqq,www). Specifically for the dynamics in Eq.(1), Nx is the
identical function and Nu is determined by Eq.(2) (Ref. 11).

Optimization-based Trajectory Design

The time-optimal trajectory optimization problem can be for-
mulated as:

argmin
t∗f ,qqq

∗,www∗
J =

∫ t f

t0
1dt, flight time (3)

s.t q̇qq = FFFqqq+GGGwww, dynamics

qqq(t0) = qqq0,qqq(t f ) = qqq f boundary constraints

Nx(qqq) ∈ X,Nu(qqq,www) ∈ U path constraints
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Figure 1: Optimization-based and Machine-learned Trajectory Generation.

In Eq.(3), qqq0 and qqq f represent the initial and terminal con-
straints of the trajectory.

For path constraints, the horizontal velocity Vh =
√

Ẋ2 + Ẏ 2≤
Vh,max, vertical velocity |Ż| ≤ Vz,max, vertical acceleration
|Z̈| ≤ az,max are enforced. Moreover, box constraints on the
input variables UUUmin ≤ |Nu(qqq,www)| ≤UUUmax are also included.

Note that the problem in Eq.(3) is an exact reformulation of
the original problem shown in Fig.(1), via differential flat-
ness. By solving the optimization problem in ( 3), qqq∗(·) and
www∗(·) are determined, and the corresponding state and in-
put trajectories can be obtained from xxx∗(·) = Nx(qqq∗(·)) and
uuu∗ = Nu(qqq∗(·),www∗(·)).

The optimization problem above is discretized into a non-
linear programming problem and solved by in the numerical
solver CasADi in MATLAB, which eventually generates the
reference time-optimal trajectory.

TRAJECTORY GENERATION USING A
NEURAL NETWORK

In this section, we develop a methodology to create data-
driven trajectory generators as an alternative. For illustra-
tive purposes, two cases are discussed in this paper. In the
first case, the inputs to the trajectory generator are the ini-
tial state and the terminal state of UAV. In the second case,
we also add bounds on path constraints as input to the tra-
jectory generator. We first generate training and testing data
sets from the optimization-based trajectory generator and then
compress the data sets so that we can retrieve complete infor-
mation of the time-optimal trajectories from smaller data sets.
A neural network model is then built, trained and tested based
on these data sets. This neural network is the machine-learned
trajectory generator as shown in Fig.(1).

Data Generation

In order to obtain adequate learning data for training the neu-
ral network, M different reference trajectories characterized
by different initial and terminal states are solved by randomly
selecting the corresponding qqq0 and qqq f as below:

qqq0 = [0,0,0,0,0,0,0,0]T ;
qqqi

f = [X i
f ,Y

i
f ,Z

i
f ,0,0,0,0,0]

T i ∈ [1,M]
(4)

where

X i
f ∈U (X f , X̄ f ), Y i

f ∈U (Y f ,Ȳf ), Zi
f ∈U (Z f , Z̄ f ) (5)

and U (·, ·) represents a uniformly random distribution;
X f ,Y f ,Z f and X̄ f ,Ȳf , Z̄ f represent the lower and upper
bounds of the sample for the terminal state X ,Y and Z respec-
tively.

Note that the boundary conditions qqq0 and qqq f in Eq.(4) repre-
sent point to point maneuvers that start with hover state at the
origin, and end with another hover state at (randomized) case-
specific coordinates. Also, despite the initial position chosen
to be the origin in this paper, this can be translated to arbitrary
coordinates without loss of generality. Furthermore, the quad-
copter is chosen to head north at the beginning and end of the
trajectory (i.e. ψ0 = ψ f = 0).

For the second case, these M trajectories are not only char-
acterized by q0 and q f as shown in Eq.(4) but are also char-
acterized by varying lower bounds of path constraints UUUmin
including constraints on θmin,φmin and thrust Tmin as well as
upper bounds of path constraints UUUmax including constraints
on θmax,φmax and thrust Tmax. Constraint on horizontal veloc-
ity VVV max are included as well. These trajectories are sampled
as below:

UUU i
min = [T i

min,θ
i
min,φ

i
min]

T ;
UUU i

max = [T i
max,θ

i
max,φ

i
max]

T ;
VVV i

max =V i
max; i ∈ [1,M]

(6)

where

T i
min ∈U (T min, T̄min), T i

max ∈U (T max, T̄max),
θ i

min ∈U (θ min, θ̄min), θ i
max ∈U (θ max, θ̄max),

φ i
min ∈U (φ min, φ̄min), φ i

max ∈U (φ max, φ̄max),
V i

hmax ∈U (V hmax,V̄hmax)

(7)

and U (·, ·) represents a uniformly random distribution;
T min,T max,θ min, θ max, φ min, φ max, V hmax and T̄min, T̄max, θ̄min,
θ̄max, φ̄min, φ̄max, V̄hmax represents lower and upper bounds of
the sample for the path constraints Umin, Umax and Vmax.

For both cases each pair of qqq0 and qqqi
f , i ∈ [1,M], the cor-

responding time-optimal trajectory t i∗
f , qqqi∗(tn) and wwwi∗(tn) is

solved and later used as the learning data for the neural net-
work. In the second case discussed above, each constraint
UUU i

min, UUU i
max and VVV i

max applied is saved as part of learning data
as well. Note that tn = t0+ n

N−1 (t f − t0),n∈ [0,N−1] denotes
the time stamp of each discretization node.
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Data Compression

Note that each of the time-optimal trajectories generated
above has a size of R12N+1, where N is the number of (dis-
cretized time) nodes in the trajectory. Although complete in-
formation of the trajectories can be directly retrieved and then
used to train the neural network, this large and complex learn-
ing data will lead to a very large neural network model and
potentially cause over-fitting issues as well as increase com-
putational burden. On the other hand, the time-optimal trajec-
tories solved from the trajectory optimization problem can be
indeed be well-approximated by parameterizing the trajecto-
ries through a set of basis functions, which eventually com-
presses the size of the data that is necessary for training the
neural network.

Parameterization of Time-Optimal Trajectory: The gen-
eral idea behind parameterizing the optimal state qqq∗(·) and
input www∗(·) is to approximate them by the summation of a
set of basis functions that are scaled by the corresponding

coefficients, in the form ˆ(?)
∗
(t) =

R
∑

k=0
a∗(?)kϕ(?)k(t), where ˆ

represents the approximated trajectory as opposed to the ac-
tual optimal solution; (?) denotes each variable (x,y,z,ψ etc.)
in the state qqq and input www; ϕ(?)k(t) represents the kth basis
function, with a∗(?)k being the corresponding parametric co-
efficients. Typically, all the variables in the state and input
vectors should be parameterized respectively. However, for
the specific problem in Eq.(3), because of the differential flat-
ness property, we only require parametrized functions of the
optimal flat output ooo∗(·) = [X∗(·),Y ∗(·),Z∗(·),ψ∗(·)]T , while
higher order time derivatives in qqq∗ and www∗ are automatically
determined.

Selection of Basis Functions: In general, there are many
choices for determining the basis functions, such as Legen-
dre polynomials, radial basis functions, splines and principal
components from data. In this paper, the variables ooo are pa-
rameterized by Rth order polynomials. The The UAV position
X∗(·), Y ∗(·), Z∗(·) and yaw angle ψ∗(·) of UAV are parame-
terized as:

ψ̂
∗(t) =

Rψ

∑
k=0

a∗(ψ)k(t− t0)k, t ∈ [t0, t∗f ] (8)

In order to determine the highest order R(?) for each flat output
variable, the approximation performance of the polynomial
with different order is evaluated by the mean squared error of

the fit: (i.e. MSE = 1
N

N−1
∑

n=0
((?)∗(tn)− ˆ(?)

∗
(tn))2)

We observed that the approximation performance is generally
good with polynomial orders larger than 4 for all 4 flat output
variables. Consequently, in order to balance trade-off between
the complexity of the neural network and the degree of free-
dom for shaping the trajectory, R(?) = 4 is chosen for fitting.

Determination of coefficients for basis functions: Note
that approximating the optimal trajectory of the flat output
ooo∗(·) may be lead to the undesirable error in the initial and
terminal position in the parameterized trajectories, if all the
parametric coefficients a∗(?),k,k ∈ [0,4] are unconstrained. In
order to satisfy the hard constraints set by the initial and ter-
minal condition of the quadcopter position and yaw angle, the
corresponding coefficients are fixed by:

a∗(?),0 = (?)∗(t0),

a∗(?),4 =
1

t∗4f

(
(?)∗(t∗f )−a∗(?),0−

4
∑

k=1
a∗(?)k(t

∗
f − t0)k

)
(9)

The rest of the coefficients a∗(?),1,2,3 for parameterizing
the optimal trajectory of the flat output variables are
then obtained by following a standard constrained least
squares problem. Note that the above problem can be
solved for any time-optimal trajectory t i∗

f , qqqi∗ and wwwi∗,
which provides the corresponding optimal parametric coef-
ficient vector aaai∗ = [(aaai∗

X )
T ,(aaai∗

Y )
T ,(aaai∗

Z )
T ,(aaai∗

ψ )
T ]T and aaai∗

(?) =

[ai∗
(?),0,a

i∗
(?),1, · · · ,a

i∗
(?),4]

T . This data is used as the training data
for the neural network, which is discussed in the next subsec-
tion.

Structure and Training of Neural Network

In this subsection, we present the methodology for developing
a data-driven path planner for generating time-optimal trajec-
tories for (1) given initial and terminal states, and (2) given
input constraints.

Figure 2: Structure of Neural Network for Time-optimal Trajectory Prediction
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Create Network Object: We create a feedforward network
which is able to predict t∗ and (?)∗, where (?)∗ denotes each
individual element in the optimal state q∗ and input w∗. The
input vector to this neural network model is the initial state x0,
final state x f of the quadcopter and the input constraints Umax
and Umin enforced during each flight. We combine all these
characteristics of the desired flight and generate the input vec-
tor to neural network as:

inputi = [(xi
0)

T ,(xi
f )

T ,(Ui
min)

T ,(Ui
max)

T ]T (10)

Note that both xi
0 and xi

f are of size R8×1; both Ui
min and Ui

max

are of size R4×1, thus the output vector as indicated in Eq.(10)
is of size R24×1. However, the true input vector we applied
may have some of the elements in Eq.(10) fixed, which is de-
termined by the physical constraints as well as the goal of the
quadcopter, we denote the actual size of the input vector we
used for our proposed neural network as m.

The output of the neural network predicts the optimal flight
time (t i∗) combined with optimal parametric coefficient vector
ai∗, which can be written as:

outputi = [t i∗,(ai∗
X )

T ,(ai∗
Y )

T ,(ai∗
Z )

T ,(ai∗
ψ )

T ]T ; (11)

Note that the optimal time t i∗ ∈ R and aaai∗
(?) ∈ R5×1, thus the

output vector as indicated in Eq.(11) is of size R21×1. Ac-
cording to Eq.(9), there are always two elements in each ai

(?)

calculated from the other elements, we can denote the actual
size of neural network output vector as n = 21.

Determine Neural Network Structure: In order to deter-
mine the structure of the neural network, we first obtain the
number of hidden layers and neurons per hidden layer. It is
generally accepted that increasing the number of hidden lay-
ers can reduce error and improve accuracy of network pre-
diction (Ref. 12). However, a larger number of hidden layers
also leads to a higher neural network model complexity, which
gives rise to increasing in training time as well as the tendency
to overfit.

For simplicity, we use a network with one hidden layer, and
then lower prediction error by adjusting the number of neu-
rons in the network. The choice of number of neurons in the
hidden layer is based on the number of input elements m, and
number of output elements n. To avoid overfitting and reduce
training time, the neural network model should be as compact
as possible. We choose the default number of neurons Nn by
checking the geometric mean

√
m×n of the input and out-

put vectors. Then we increase the number of Nn and conduct
K-fold cross validation (Ref. 13). The optimal Nn is chosen
as the number of neurons that results in the smallest testing
error. All neurons Nk in the hidden layer are connected with
each element of the input layer and each connection is sepa-
rately weighted by a weight wik. The input xhid and output yhid
of the hidden layer of the proposed prediction neural network
can be written as shown in Eq.(12):

xhid = [xT
0 ,x

T
f ,U

T
min,UT

max]
T ;

y1 = Ga1(W1x1 +b1));
(12)

where b1 is a vector consists of all bias for each neurons and
Ga1 is the activation function of hidden layer. All weights Wik
are initialized with a small random numbers Wik0 ∈ (0,0.001).
We choose Ga1 as the hyperbolic tangent sigmoid function,
Ga1(x) = ex−e−x

ex+e−x . The output of output layer can be written
as shown in Eq.(13) and an identical function is used for the
activation function Gaout(x) = x.

yout = Gaout(Woutys+1 +bout));) (13)

where s is hidden layer number. Since the sigmoid activa-
tion function in the hidden layer bounds the output between
[−1,1], the output of proposed neural network is in fact the
normalized output. We then calculate the predicted output
from these normalized values. The structure of this neural
network model is shown in Fig.(2).

Train Neural Network: Once the structure of the neural net-
work is established and the weights and bias are initialized,
the neural network is ready for training. We use the well-
known Levenberg-Marquardt algorithm (Ref. 14) for training.
We form input and output vectors by combining input and out-
put vectors of every single sample as shown in Eq.(14):

Input = [input1, input2, · · · , inputi];
Output = [output1,output2, · · · ,outputi];

(14)

Note that the output training samples should be normalized
before training. During training, the weights and bias of the
network is adjusted to minimize the mean square error be-
tween the network output and desired outputs. Thus, the
weight matrices W1,Wout and bias vectors b1,bout are ob-
tained.

VALIDATION OF NEURAL NETWORK
TRAJECTORY GENERATION

In this section, we outline the methodology for validating the
proposed data-driven trajectory generation algorithm. The
performance of the trajectory generator is evaluated based on
approximation quality and violation of constraints.

Evaluating Quality of Approximation

To evaluate the neural network prediction of optimal flight
time tpred against true optimal time t∗, we evaluate the (nor-
malized) error as shown in Eq.(15):

et =
|tpred− t∗|

t∗
(15)

To determine the quality of the predicted trajectories of the
flat outputs by the neural network, we calculate the root
mean squared error (RMSE) between the predicted flat out-
put (?)pred and flat output obtained from the optimizer (?)∗ in
the validation data set. This RMSE is calculated as shown in
Eq.(16):

e(?)pred =

√
1
N

N−1

∑
n=0

((?)pred(tn)− (?)∗(tn))2 (16)
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To test the quality of trajectories generated by the neural net-
works, we analyze the distribution of prediction mean square
errors e(?)pred for different validation samples and provide a
statistical analysis of the approximation quality of the pro-
posed neural network.

Evaluating Violation of Constraints

Since the data-driven model has no inherent mechanism to en-
code the dynamics and path constraints, it is critical to confirm
that the neural network predicted trajectories meet the dynam-
ics and path constraints that the original trajectories were de-
signed to satisfy.

From the flat output trajectories generated by the neural net-
work, we can compute the entire state trajectory. We can
then evaluate violation of constraint of the proposed machine-
learned model by comparing the neural-network-predicted
states with the constraints enforced in the original optimiza-
tion problem.

We now evaluate the violation/satisfaction of roll, pitch, thrust
and horizontal velocity limits by the trajectories generated by
the neural network. The profiles of roll angle φ and pitch
angle θ for each trajectory in the validation sample set are ob-
tained by using Eq.(2). We then utilize the same criteria to ver-
ify the constraint on thrust T and horizontal velocity Vh. Mean
violation of path constraints are calculated by Eq.(17),where
4 denotes φ , θ , T and Vh.

e(?)pred =
1
N

N

∑
n=0
|(4)violated(tn)− (4)Constraint(tn)| (17)

RESULTS, VALIDATION, AND DISCUSSION

To apply and test the methodology for the data-driven trajec-
tory generator, we build two neural networks: one with only
the desired initial and terminal states as input (Case 1) and
another with both desired states and constraints enforced in
optimization problem as input to the neural network (Case 2).
We evaluate the quality of these two trajectory generators by
testing them with different validation samples and provide a
statistical evaluation.

Case 1: Path Planner with Fixed Constraints

Following the proposed methodology, we build a neural net-
work with one hidden layer and 13 neurons to predict the op-
timal flight time and all four elements (?)∗ of the flat outputs.
In this case, input to the neural network are the initial and final
states of quadcopter as shown in Fig.(4). We randomly gen-
erate a sample set of 2000 trajectories as the learning data set
and then another data set of size 500 trajectories for validation
purposes, in both of which, X f =Y f = 10 m, Z f =−20 m and
X̄ f = Ȳf = 20 m, Z̄ f =−10 m are selected.

Figure 4: Machine-learned Trajectory Generator with Fixed
Constraints (Case 1)

We first present a comparison of representative trajectories
obtained from the neural network model against those deter-
mined by direct optimization. For illustrative purposes, we
show one particular scenario for trajectories predicted from
the machine learned trajectory generator compared against
those from the optimization-based approach, in Fig.(3). We
observe that the trajectories planned by the machine-learned
model approximate those obtained from the optimization-
based planner well. The RMSE of X trajectory prediction is
0.134 m, the RMSE of Y trajectory prediction is 0.170 m, the
RMSE of Z trajectory prediction is 0.207 m and RMSE of ψ

trajectory prediction is 5.119 deg.

Next, we present a statistical evaluation of the data-driven tra-
jectory generation mechanism. We plot the distribution of pre-
diction errors for optimal time t∗ and all flat outputs (?) for all
500 validation trajectories, shown in Fig.(5). The dashed lines

(a) X Trajectories (b) Z Trajectories (c) Yaw ψ Trajectory

Figure 3: Sample Trajectories from the Machine-learned Planner and the Optimization-based Planner.
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(a) Optimal time t∗ Prediction (b) X and Y Prediction RMSE

(c) Z Prediction RMSE (d) ψ Prediction RMSE

Figure 5: Percentile vs Prediction RMSE between Neural Net-
work and Optimization-based Trajectories, from 500 Valida-
tion Cases.(The dashed lines indicates RMS of 90th-percentile
Prediction)

(a) Evaluation of Constraint on φ (b) Evaluation of Constraint on θ

(c) Evaluation of Constraint on T (d) Evaluation of Constraint on Vh

Figure 6: Evaluation of Path Constraints, for 500 validation
cases (Case 1)

show the RMS prediction error for the 90th-percentile of all
test samples to be within 0.110 m for X , within 0.164 m for
Y , within 0.189 m for Z and within 4.796 deg for yaw, which

(a) Evaluation of bounds of φ (b) Evaluation of Bounds of θ

Figure 7: Evaluation of Bounds of Constraints, for 500 vali-
dation cases (Case 1)

means the neural network model generates trajectories with
better RMSE than those in Fig.(3), 90% of the time.

Finally, we test each trajectory for the degree of constraint
violations. We check the violations on max/min θ = ±10
degree , φ = ±10 degree, thrust T = [1.96 N,19.6 N], and
Vh = [0,5 m] during each flight in the validation sample, and
provide a statistical analysis as shown in Fig.(6). We can see
that for 90% of the trajectories in the validation data set, the
mean violation of constraints on φ is no more than 0.52 degree
and the mean violation of constraints on θ is no more than
0.78 degree. We can observe from Fig.(6) that only 50 % of
trajectories in the validation set always satisfy the constraint
θ ,φ ∈ [−10 deg,10 deg]. The distribution of the maximum
and minimum roll, pitch angle is illustrated in Fig.(7). Note
that the distribution of upper and lower bounds of each tra-
jectories predicted is centered around the enforced upper and
lower bounds of constraints. The mean violation of constraint
on horizontal velocity Vh is less than 0.045 m/s for 90% of
the sample trajectories in validation data set from Fig.(6). In-
terestingly, the thrust bound is never violated in the cases we
studied.

We then tested the neural network trajectory planner on an-
other sample set consisting of randomly generated trajectories
in which X f = Y f = 5 m, Z f = −10 m and X̄ f = Ȳf = 10 m,
Z̄ f = −5 m are selected as shown in Fig.(8). This flight is
‘shorter’ than the training flights (used to train the network)
and upper bound of constraints on roll, pitch angle are not ac-
tive often. The trajectory generator is adequate for all X ,Y,Z
and ψ trajectories.

Case 2: Path Planner with Constraints as Input

In addition to initial and terminal states, we now train the neu-
ral network to generate trajectories with different bounds on
the path constraints. The inputs to the neural network are the
initial state, terminal state, and bounds on row, pitch angle as
well as thrust and maximum horizontal velocity. To do this,
we train the network on learning data with varying constraints
U including constraints on row, pitch angle as well as thrust
and maximum horizontal velocity Vh, as shown in Fig.(9).
Upper and lower bounds Vmax,UUUmax and UUUmin for these path
constraints are randomly generated within reasonable physi-
cal limits. In this case, the constraints are sampled within the
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(a) X and Y Trajectories (b) Z Trajectories (c) Yaw ψ Trajectory

Figure 8: Sample Trajectories from the Path Planner and the Optimization-based Planner (Different Flight Range).

Figure 9: Machine-learned Trajectory Generator with Con-
straints as Input (Case 2).

range stated in Eq.(18):

Vmax ∈ [4m/s,10m/s];
UUU lower

min = [1.96N,−20deg,−20deg];
UUUupper

min = [6.87N,−10deg,−10deg];
UUU lower

max = [14.72N,10deg,10deg];
UUUupper

max = [19.60N,20deg,20deg]

(18)

A new training data set consisting of 2000 trajectories is gen-
erated following these requirements and a validation sample
set of size 500 is generated in the same manner as well, in both
of which, X f =Y f = 10 m, Z f =−20 m and X̄ f = Ȳf = 20 m,
Z̄ f =−10 m are selected. Based on these two data sets, a new
neural network model is built, trained and performance of this
neural network is evaluated following the methodologies used
in the previous case.

We first show one particular scenario for illustrative pur-
poses in Fig.(10) and then demonstrate the accuracy of
this path planner by presenting a statistical evaluation as
shown in Fig.(11). The trajectories planned by this new
machine-learned model approximate those obtained from the
optimization-based planner well. The RMSE of X trajectory
prediction is 0.707 m, the RMSE of Y trajectory prediction
is 0.836 m, the RMSE of Z trajectory prediction is 0.740 m
and RMSE of ψ trajectory prediction is 7.681 deg. Compared
with the neural network developed in case 1, the prediction
accuracy of this new path planner with some constraints as
input is lower.

Path constraints are evaluated as shown in Fig.(12) by check-
ing the violations on max/min θ , φ , thrust T , and Vh during

(a) X and Y Trajectories (b) Z Trajectory

(c) Yaw ψ Trajectory

Figure 10: Sample Trajectories from the Machine-learned
Planner and the Optimization-based Planner.

each flight in the validation sample. Note that each trajectory
has different upper and lower bounds of constraints within the
range stated in Eq.(18). These bounds are included in the in-
puts to the neural network. We can see that for 90% of the
trajectories in the validation data set, the mean violation of
constraints on φ and θ is no more than 0.10 degree which is
smaller than the mean violation angle in case 1. Comparing
with Fig.(6) with only 50% of trajectories always satisfying
the enforced constraints on φ and θ , we can see that up to
80% of the predicted trajectories do not violate enforced con-
straints in Fig.(12). We can also observe that more than 90%
of the prediction satisfy constraint on horizontal velocity Vh.
In other words, risk of constraint violation is decreased by in-
putting constraints into our neural network model.
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(a) t∗ Prediction Error (b) X and Y Prediction RMSE

(c) Z Prediction RMSE (d) ψ Prediction RMSE

Figure 11: Percentile vs Prediction RMSE between Neural
Net and Optimization-based Trajectories, from 500 Validation
Cases.(The dashed lines indicates RMSE of 90th-percentile
Prediction)

(a) Evaluation of Constraint on φ (b) Evaluation of Constraint on θ

(c) Evaluation of Constraint on T (d) Evaluation of Constraint on Vh

Figure 12: Evaluation of Path Constraints, for 500 validation
cases (Case 2)

CONCLUSIONS

The goal of this research was to determine a data-driven ap-
proach for real-time trajectory planning for UAV’s. To this
end, a method to create a ‘black-box’ model that approxi-

mates a time-optimal trajectory given the initial and terminal
flights states was proposed. Data from a model-based trajec-
tory optimization algorithm was used to train the neural net-
work model. This trajectory data was compressed by using
projection onto a set of (piecewise) polynomial functions. The
compressed data was used to train a (relatively simple) neural
network. Subsequent testing and validation showed that the
neural network can indeed produce trajectories very similar
to those generated from the optimization algorithm, and vio-
lates the constraints for a very small fraction of the flight time.
With this data-driven black-box trajectory planner, we can re-
duce the computational time since the optimization problem
is no longer solved on-the-fly.

There are several interesting directions to follow based on re-
sults in this paper. One of them is to design a trajectory plan-
ner that can avoid obstacles with fixed states. We can take
the size and location of fixed state obstacles into account by
adding one or more features that capture the obstacle’s effect
on the trajectory we generate. Another interesting direction
is to create on-board path planner with flexible dynamic con-
straints. While the planner developed here produces trajecto-
ries with specified (fixed in time) state and input constraints,
adding dynamic constraints to the neural network model as
new features will enable adaptation to changing flight con-
straints.
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