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ABSTRACT
The growing interest in large electric multicopters (eVTOL aircraft) has prompted the search for methods that can
accurately and efficiently predict their aerodynamic performance under different designs and operating conditions.
The challenge is modeling the complex interactional effects of rotors operating in close proximity. This can be tackled
with high-fidelity computational fluid dynamics (CFD) models, which capture the physics of rotor interaction from
first principles. However, they are computationally demanding for performing studies over a range of parameters. On
the other hand, lower-fidelity models are computationally inexpensive, but approximate the underlying physics and
can be imprecise in predicting the fields of interest. In this study we present a multi-fidelity approach that inherits
the accuracy of a high-fidelity model, while retaining most of the computational efficiency of a low-fidelity model. In
this approach, the low-fidelity model is used to investigate the entire space of parameters and identify key parameter
values to perform high-fidelity simulations. Thereafter, these high-fidelity simulations are used in a lifting procedure
to determine multi-fidelity solutions at desired parameter values. We apply this strategy to determine the rotors’ lift
and drag distributions of a 2-rotor assembly in forward flight. The parameters considered are design variables, namely
the longitudinal and vertical rotor-to-rotor separation, and operating conditions variables: forward speed and disk
loading (DL). We conclude that over a large of parameters this approach yields results that retain the accuracy of the
high-fidelity predictions at the computational cost of the low-fidelity model.

INTRODUCTION

The last decade has seen a surge of interest in large eVTOL
aircraft for Urban Air Mobility, commercial package deliv-
ery, and military applications. With the current battery en-
ergy density limitations, it is especially important to maxi-
mize eVTOL aircraft aerodynamic performance. Therefore, a
time-efficient aerodynamic characterization that accounts for
the complex interaction between the rotors at various multi-
copter design and operation conditions becomes very appeal-
ing. While high-fidelity CFD models provide a detailed de-
scription of the physics of multi-rotor interaction, in most
cases, they are too computationally demanding to perform
studies over a range of parameters. In these cases, lower-
fidelity models, with simplified physics or other approxima-
tions, are used instead. However, these lower-fidelity models
typically incur larger errors in predicted quantities of interest
(QoIs), such as thrust, torque, and power. It is therefore useful
to develop multi-fidelity methods that combine the desirable
characteristics of both high- and low-fidelity models. That
is, they inherit the computational efficiency of the low-fidelity
model, while retaining the accuracy of the high-fidelity model.

Multi-fidelity methods have a rich history of application in
different areas of science and engineering. The reader is re-
ferred to Fernández-Godino et al. (Ref. 1) and Peherstofer et
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al. (Ref. 2) for two comprehensive reviews of these methods.
In Peherstofer et al., the authors classify these methods into
three categories: adaptation, fusion and filtering. Methods
that fall in the adaptation category begin with a low-fidelity
model and adapt it by adding terms that are driven by the re-
sults from the high-fidelity model. On the other hand, model
fusion methods use predictions from low-fidelity and high-
fidelity models in a third “fused” multi-fidelity model. Finally,
methods based on the filtering approach use predictions from
the low-fidelity model to determine the precise parameter val-
ues where high-fidelity predictions are to be performed, and
then use these results either to adapt the low-fidelity model,
or to fuse the low- and high-fidelity models. When viewed
from this perspective, the multi-fidelity model developed in
this study relies on fusion and filtering. In particular, it fuses
a high- and a low-fidelity model into a another model. Fur-
ther, it relies on filtering since it prescribes the points in the
parameter space where the high-fidelity model ought to be de-
ployed.

The multi-fidelity approach presented in this paper was devel-
oped in (Ref. 3), further analyzed in (Refs. 4,5), and applied to
topology optimization under uncertainty in (Ref. 6). It com-
prises of the following steps:

1. Perform a large number of low-fidelity simulations to
generate snapshots that span the domain of interest in the
parameter space.

2. Identify the parameter values corresponding to the most
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important low-fidelity snapshots, and then express each
of the remaining snapshots in the set in terms of these
important snapshots.

3. Perform high-fidelity simulation at the parameter val-
ues corresponding to the important snapshots to generate
their corresponding high-fidelity counterparts.

4. Use the expansion coefficients computed in Step 2, but
with the high-fidelity snapshots computed in Step 3, in
order to construct the multi-fidelity surrogate of the so-
lution in the entire parametric domain of interest.

We note that several numerical methods can be employed to
determine the important snapshots in Step 2 above (Ref. 7).
These include leverage sampling, which is an singular-value-
decomposition-based method to solve the column subset se-
lection problem (CSSP) (Refs. 8, 9), a pivoted Cholesky de-
composition (Refs. 3, 4), or a pivoted QR decomposition
(Refs. 10–12). In this work we utilize the QR decomposition,
since it is computationally efficient and robust (Refs. 13, 14).
We apply this multi-fidelity approach to predict the aerody-
namic performance of a two-rotor system in forward flight,
when both design variables and operating conditions are var-
ied. The four parameters we consider are the longitudinal and
vertical distance between the two rotors, dx and dy (Fig. 1),
the forward speed V , and the disk loading DL. The fields we
are interested in predicting are the lift and drag distribution
for both rotors, from which the total rotors’ thrust and torque
can be computed. For the high-fidelity model we use a CFD
model of the system and for the low-fidelity model we use the
RMAC model (Ref. 15), which is based on a blade element
approximation. In Ref. 16, we have applied this approach
to investigate the effect of rotor-separation only. In this work
we extend the study to include the effect of disk loading and
forward speed.
The format of the remainder of this manuscript is as follows.
In the following section we formulate the problem of interest
by describing the high-fidelity and the low-fidelity models in
detail and our strategy for combining them. Thereafter, we
present numerical results, and end with conclusions.

PROBLEM FORMULATION
We analyze the aerodynamic behavior of the rotors of a two-
rotors multicopter in forward flight, outlined in Fig. 1. The ro-
tors are located in the longitudinal plane, aligned with the for-
ward velocity, and the fields of interest are the disk plots of lift
and drag. The relative position of the rotors can be described
using the inter-rotor longitudinal and the vertical distance, de-
noted by dx and dy. Together with the operating conditions
of forward speed V and disk loading DL, a four-dimensional
parameter space θθθ = (dx, dy, DL,V ) for the system of inter-
est is defined. At each point, θθθ in the parameter space we
can associate a value of the fields of interest, namely the lift
and drag distribution. The two different fidelity models used
to investigate the behavior of the dual-rotor multicopter are a
high-fidelity CFD model, and the lower-fidelity blade element
theory model.

High-Fidelity Model – CFD

CFD simulations are conducted using the commercial Navier-
Stokes solver AcuSolve which uses a stabilized 2nd-order up-
wind finite element method. AcuSolve simulation results for
an SUI Endurance rotor in hover were previously shown to
compare well against experiment in Ref. 17. For a two-rotor
unit, the computational domain is shown in Fig. 2a, compris-
ing of a rectangular prism with far-field boundary conditions
on the front and top surfaces set to the freestream velocity.
The sides, bottom and rear of the computational domain are
set to outflow with backflow conditions enabled, which al-
lows for flow in either direction across the boundary with zero
pressure offset. All boundaries of the computational domain
are at least 25 rotor radii away from the center of the 2-rotor
assembly in all directions. As indicated in Fig. 2a, within
the volume resides two cylindrical rotating volumes (one for
each rotor), where the mesh inside the volume rotates along
with the rotor geometry. Each rotating volume is a cylinder
with radius 1.06R. The height of the cylinder extends two tip
chord lengths above and below the rotor plane. Each rotating
volume is bounded by a sliding mesh interface which passes
information into and out of the non-rotating volume that com-
prises the remainder of the computational domain.

The domain is discretized using a mesh comprised entirely of
unstructured tetrahedral elements. Within both rotating vol-
umes, the blade surface mesh is set to ensure 200 elements
around the airfoil contour. The blade surface elements are re-
fined by a factor of 10x near the leading edge (0-10% chord)
and trailing edge (90-100% chord), compared to the elements
along the remainder of the chord. A portion of the blade sur-
face mesh is shown in Fig. 3a. The boundary layer in the
wall normal direction is highly resolved, with the first element
height set to ensure y+ < 1, and at least 25 layers. A cross-
sectional slice through the mesh in Fig. 3b shows the bound-
ary layer elements around the airfoil. A refinement region,
with element size prescribed as 1/2 tip chord is established for
the off-body area around the rotors, and extends 0.6R above
the rotor plane, and 3R below (Figure 2b), with the mesh re-
finement below the rotor plane skewed towards the rear to bet-
ter capture the rotor wakes as they convect downstream. The
entire computational domain is comprised of 122 million el-
ements, with 33 million in each rotating volume, and 56 mil-
lion in the nonrotating volume. A mesh refinement study was
performed in which the surface mesh size, edge refinement,
boundary layer, and wake refinement were doubled indepen-
dently. The results of the refinement study indicated that the
thrust and torque changed by less than 1.5% and 2.5% respec-
tively when compared to the original mesh (which is used for
simulations in this study) (Ref. 18).

A detached eddy simulation (DES) is used with the Spalart-
Allmaras (SA) turbulence model. All simulations are run ini-
tially using time steps corresponding to 10° of rotor rotation
for several revolutions to reduce the computational cost of
the rotor wake development. Each simulation is then con-
tinued for additional revolutions at 1° time steps until thrust
and torque convergence is achieved. The initial 10° time steps
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Figure 1: Longitudinal and vertical distance dx and dy
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Figure 2: CFD simulation domain and mesh
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Figure 3: Mesh visualization
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are possible without causing numerical divergence due to the
stability afforded by the Streamline Upwind Petrov-Galerkin
(SUPG) stabilized finite element method and Generalized-α
implicit time integration method. The latter method was de-
signed to suppress high frequency distrubances and allow so-
lution stability with Courant-Friedrichs-Lewy number greater
than 1 (Refs. 19,20). All runs were performed on 512 2.6 GHz
Intel Xeon E5 -2650 processors, part of the Center for Com-
putational Innovations at Rensselaer Polytechnic Institute.

Low-Fidelity Model – RMAC

The low-fidelity model used in this study is the Rensselaer
Multicopter Analysis Code (RMAC, Ref. 21). Blade element
theory is used to calculate the lift and drag at a differential
blade element. In the RMAC simulations presented, each
blade is divided into 48 radial segments, at which lift and drag
are evaluated, resulting in a radial load distribution. Integra-
tion over the span and summing over the blades yields instan-
taneous loads (such as thrust and torque) at the rotor hub.

Rotor induced flow is modeled using a rigid, helical wake
trailed from the blade tips (Ref. 22). The strength of each vor-
tex filament is developed using a time-marching scheme, with
2° azimuthal resolution and a maximum wake age of 1440°.
Utilizing the Biot-Savart law, the flow induced by the vortex
filaments is evaluated at each radial station on both rotors,
capturing the flow induced by each rotor on the other.

A helical vortex-wake model is applied (Ref. 22) to calculate
the flow induced by the rotor. In this model, the rotor wake
is represented by a vortex trailed from the tip of each rotors
blade. As the rotor turns, the trailed vortex filaments are con-
vected downward by the mean rotor induced flow and back-
ward by the free-stream velocity. By using the Biot-Savart
law, the vortex-induced flow can be calculated at any point in
space, which makes it capable of predicting rotor-rotor inter-
ference effects. For the simulations presented, the maximum
wake age is 4 rotor revolutions (1440°), with a 2° resolution,
resulting in 180 distinct azimuthal locations for the rotor lift
and drag distributions.

Multi-Fidelity Approach

For a fixed value of problem parameters, denoted by θθθ =
(dx, dy,V, DL), the low- and high-fidelity models can be used
to compute the distributions of lift and drag over the front and
aft rotors disks. These values are stored in a vector whose
components are the value of lift/drag for the front/aft rotor
at discrete radial and azimuthal coordinates. We denote the
low-fidelity version of this vector (computed using RMAC)
by uuui = uuu(θθθ i), and the high-fidelity counterpart (computed
using CFD) by vvvi = vvv(θθθ i). We will fuse these to generate
a multi-fidelity vector, which we will denote by v̄vvi = v̄vv(θθθ i).
The construction of the multi-fidelity model is done in three
different steps. The first involves solving a subset selection
problem, which will lead to a surrogate model for the low-
fidelity model. Finally, a lifting procedure is used to achieve
the final expression of the multi-fidelity model.

Subset Selection Problem We consider a large set of points
in the parameter space, S = {θθθ i}, i = 1, . . . ,N, and com-
pute the corresponding snapshots with the low-fidelity model
uuui. Out of these, we select the n � N most significant
ones. This means finding the snapshots to construct the n-
dimensional subspace that can represent the set of the N snap-
shots with minimal l2 error. The solution of this problem
is found through a truncated rank revealing QR decomposi-
tion (Refs. 3, 10) of the snapshot matrix UUU = [uuu1, . . . , uuuN ],

UUUPPP = QQQRRR. (1)

In the equation above QQQ is an orthogonal matrix, RRR is a an
upper-triangular matrix, and PPP is the permutation matrix. This
matrix orders the snapshots from the most important to the
least, such that the n snapshots we are interested are the first n
columns of matrix UUUPPP.

We re-index the set S = {θθθ i} and the snapshots uuui, i =
1, . . . ,N, to reflect this new ordering. The “important” pa-
rameter values can be included in the set S̄ = {θθθ i}n

i=1 and the
important snapshots stored in the matrix

ŪUU = [uuu1, . . . , uuun]. (2)

Low-rank Surrogate Model We can construct a low-fidelity
surrogate model ūuu(θθθ) as an expansion in terms of the impor-
tant snapshots,

ūuu(θθθ) =
n

∑
i=1

uuuigi(θθθ). (3)

The value of the functions gi at a given set of parameters θθθ j
are found by minimizing the residual,

R = |ūuu(θθθ j)−uuu(θθθ j)|2 = |
n

∑
i=1

uuuigi(θθθ j)−uuu j|2, (4)

yielding the following solution

ggg(θθθ j) = [gi(θθθ j)]
n
i=1 = GGG−1 fff j (5)

where GGG ≡ ŪUUTŪUU ∈ Rn×n is the Gramian matrix and fff j ≡
ŪUUT uuu j ∈ Rn.

Lifting Procedure In the lifting step, we perform high-
fidelity simulations at the important parameter values, S̄ =
{θθθ i}n

i=1. This gives us the snapshots vvvi, i = 1, . . . ,n. We
use these snapshots to replace the low-fidelity basis in Eq. 3,
thereby “lifting” the low-fidelity surrogate model. This leads
us to the final form of the multi-fidelity model

v̄vv(θθθ j) =
n

∑
i=1

vvvigi(θθθ j). (6)

A few remarks are in order here. First, we note that multi-
fidelity approach describe above is general and can be applied
to any set of low- and high-fidelity models. Second, the low-
rank surrogate model and the lifting steps of this approach
can be applied independently of the subset selection problem.
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In particular, if a small number of high-fidelity snapshots are
available a-priori, then one can forgo the portion of multi-
fidelity approach dedicated to finding the important param-
eter values, and still apply the rest of the approach (low-rank
approximation and lifting) to generate a multi-fidelity model.
In the Numerical Results section described next, we consider
this scenario.

NUMERICAL RESULTS

For the numerical application of the method, only the lifting
procedure is used, as a set of CFD data, generated in Ref. 18,
was available for use. Therefore, the low-fidelity snapshots
employed as basis in Eq. 3 are the ones for which a high-
fidelity counterpart is available. From here, the functions of
the parameters gi(θθθ) are computed as described in Eq. 5, and
finally, a multi-fidelity model (Eq. 6) is created.

In the present study, the lift and drag analysis are kept distinct
and are carried out separately. That is, a separate multifidelity
model is created for lift and drag. In both cases, the compo-
nents of the snapshot vector uuui are the value of lift/drag for
the front and aft rotors at distinct radial and azimuthal coordi-
nates.

The multi-rotor assembly considered in this study has two
identical counter-rotating rotors aligned with the longitudinal
axis, as shown in Fig. 1, where the front rotor rotates clock-
wise and the rear rotor rotates counter-clockwise. The rotors
have a radius of R= 0.8425m (33.17in) and the blades, whose
planform is shown in Fig. 4, have a root pitch of 24° and linear
twist rate of -12°.

Figure 4: Blade planform for the rotors, reproduced from
(Ref. 18).

The range of parameters for the design configurations and op-
erational conditions are dx ∈ [2.25R, 4R], dy ∈ [0, 0.75R], V ∈
[20, 70]kts and DL ∈ [6, 12] lb ft−2. In this 4-dimensional pa-
rameter space, we have the access to 248 low-fidelity RMAC
simulations and 14 high-fidelity CFD simulations. Among the
14 CFD snapshots, only n = 10 are selected as the basis to
“lift” the model, while the remainder are used to validate the
multi-fidelity results. A summary of all the simulations avail-
able, represented as points in the parameter space, is presented
in Fig. 5.

To ensure that the physics embedded in the whole set of low-
fidelity snapshots is well captured and represented by this sub-
set of 10, we can plot the contour of the relative l2 error de-
fined as:

ei =
||uuui− ūuui||
||uuui||

×100 (7)

This quantity represents the difference between the surrogate
model constructed from the subset of 10 low-fidelity snap-
shots as basis (Eq. 3), and the low-fidelity model itself. The
distribution of this error in the parameter space is shown in
Figs. 6 and 7. The error in the (dx, dy) plane is below 2%
for both lift and drag distributions, and in the (V, DL) plane is
below 10% for the lift and around 15−18% for drag. We con-
clude that the subset of 10 snapshots used as basis is able to
represent lift distribution with sufficient accuracy. To achieve
better accuracy we would need more than 10 snapshots.

Once the surrogate model is created, we can apply the lifting
procedure by replacing the low-fidelity snapshots with their
high-fidelity counterparts, leading to the multi-fidelity model
described in Eq. 6.

To validate the model, we compare its predictions with the
high-fidelity CFD results at the four validation points in pa-
rameter space. In Fig. 10a, the lift distribution obtained with
the CFD, RMAC and multi-fidelity models at validation point
1 (as defined in Fig. 5) are shown. To better visualize the
error in the predicted lift distribution, the difference of the
RMAC and multi-fidelity disk plots with respect to the bench-
mark CFD is also presented in Fig. 10b. In Fig. 11 the same
is shown for the drag disk plots. Similarly, in Figs. 12 and 13
results are presented for validation point 4.

We observe that when compared with the CFD result, the
RMAC model correctly identifies the regions of high and low
lift/drag, but it over-predicts their maximum values for both
front and rear rotors. The multi-fidelity model is able to cor-
rect that, as its predictions are closer to that of the high-fidelity
CFD model. The quantitative performance of the models are
presented in Tables 1 and 2, where we report the relative l2
error

Ei =
||vvvi− v̄vvi||
||vvvi||

×100 (8)

in the predicted lift and drag distributions for the 4 validation
points. We observe that the error for the multi-fidelity model
is consistently smaller than that for the low-fidelity model.

The validated multi-fidelity model is used to generate inte-
grated quantities of interest, in particular the front and aft rotor
thrust, which is computed from the lift distribution at different
rotor separation and operating conditions.

In Figs. 8 and 9, we show the forward and aft rotor thrust
as a function of the longitudinal separation dx and forward
speed speed V , respectively. Prediction from the low-fidelity
(RMAC) and multi-fidelity models, as well as the high-fidelity
CFD model (wherever available) are shown.

As the longitudinal separation dx is increased (keeping dy and
V fixed), the front rotor thrust remains relatively constant, re-
gardless of nominal disk loading. As the front rotor is up-
stream of the aft rotor, it does not encounter significant in-
teractional aerodynamic effects from the aft rotor. Thus, its
thrust is independent of the aft rotor position, a behavior pre-
dicted by both the low-fidelity and multi-fidelity models.
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Figure 6: Relative error of the surrogate model with respect to the low-fidelity model

On the other hand, the aft rotor operates in close proximity
to the front rotor’s wake, so there is a strong interactional
aerodynamic effect. Front-rotor-induced downwash on the aft
rotor results in a relative lift deficit (Ref. 18), especially on
the front half of the rotor. From a blade element perspec-
tive, extra downwash increases the induced inflow angle, re-
ducing the local angle of attack, thereby reducing lift. Both
models predict that as rotors are brought longitudinally closer
together (smaller dx), aft rotor thrust production diminishes,
though this effect is more pronounced in the RMAC model.
The closer the aft rotor is positioned relative to the front rotor,
the closer it is to the front rotor wake, and the stronger the
front-rotor-induced downwash. At both disk loadings how-
ever, the low-fidelity model predicts a stronger correlation
between longitudinal separation and aft rotor thrust than the
multi-fidelity model. Whereas RMAC predicts thrust to im-
prove as separation is increased past 3.5R (and is approx-
imately the same as the front rotor at dx = 4R), the multi-
fidelity surrogate does not predict any additional benefit past
about 3R separation. Though it makes intuitive sense for the

aft rotor thrust to approach the front rotor’s thrust as the sepa-
ration increases, the sensitivity of aft rotor thrust to its position
is very low as predicted by CFD (as evidenced by the three
validation points in Fig. 9), at least for that particular speed
and rotor separation, though additional CFD data at dx = 0 is
needed to determine which trend is correct.

As speed increases, both RMAC and the multi-fidelity model
predict greater thrust from both the front and rear rotors.
Physically, the additional mass flux reduces the induced in-
flow, increasing the angle of attack of the fixed-pitch rotor
blades, leading to higher lift.

CONCLUSIONS

In this paper we describe a method to combine two distinct
models of different accuracy and cost, and generate a multi-
fidelity model. This approach leverages results from a low-
fidelity, low-cost model to span a parameter space, and uses
a few selected a high-fidelity, high-cost model simulations to
improve the accuracy. We applied this method to predicting
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Table 1: Relative l2 norm error in the low- and multi-fidelity (MF) models for lift distributions.

Lift Validation 1 Validation 2 Validation 3 Validation 4
Front Rear Front Rear Front Rear Front Rear

RMAC 41.60 43.79 42.95 43.31 42.64 42.91 39.37 41.55
MF 3.77 4.26 3.77 3.35 2.13 1.83 6.15 5.22

the rotor lift and drag distributions for a multicopter in for-
ward flight. The low-fidelity model is based on the blade-
element theory while the high-fidelity model is based on CFD.
We have validated the performance of the multi-fidelity model
with CFD data and quantified the gain in accuracy it engen-
ders. We have also used it to examine the variation of thrust
generated by the front and aft rotors as a function of longitudi-
nal rotor separation and forward speed. Future work along this
direction involves using the multi-fidelity approach to decide
which high-fidelity simulation to perform, a more through ex-
ploration of quantities of interest like thrust, torque and power
within the parametric space, and the use of other combination
of low- and high-fidelity models.
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Table 2: Relative l2 norm error in low- and multi-fidelity (MF) models for drag distributions.

Drag Validation 1 Validation 2 Validation 3 Validation 4
Front Rear Front Rear Front Rear Front Rear

RMAC 59.25 55.31 59.30 56.23 58.76 56.47 57.81 52.30
MF 11.31 3.20 5.96 2.65 5.64 1.86 6.94 5.86
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Figure 8: Thrust versus longitudinal separation for dy = 0, V = 40kts.
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Figure 10: Validation Point 1: Low- and Multi-Fidelity lift disk plots (Units N/m).
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Figure 11: Validation Point 1: Low- and Multi-Fidelity drag disk plots (Units N/m).
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Figure 12: Validation Point 4: Low- and Multi-Fidelity lift disk plots (Units N/m).
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Figure 13: Validation Point 4: Low- and Multi-Fidelity drag disk plots (Units N/m).
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