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ABSTRACT 

Developing standard, well-vetted methods for modeling and simulation, prediction of flying/handling qualities, and 
control system design is critical for improving safety and quality control of multirotor electric aerial vehicles. This 
paper explores two methods for modeling the dynamics of a small (56 cm, 1.56 kg) hexacopter at hover and forward 
flight. The first modeling method was system identification from flight data, the second method was a physics-based 
blade element model with 10 state Peter-He inflow. Evaluation of the fidelity for both the system-identification and 
physics-based models was completed by comparison to flight data at hover and forward flight. The results were used 
to classify the importance of key dynamic building blocks on the model fidelity, such as motor/rotor lag dynamics, 
inertia, and dynamic inflow.   

INTRODUCTION 

Vertical lift multirotor electric aerial vehicles are 
gaining interest in civilian and military sectors, 
because of their utility in photography, law 
enforcement, firefighting, package delivery, 
surveillance and reconnaissance, among many other 
applications in both the civilian and military sectors. 
In fact, the FAA predicts that use of commercial (non-
model) use of small unmanned aerial systems (which 
is largely dominated by multirotor electric vehicles) 
will increase by a factor of 4 by 2022 [1]. Larger 
vertical lift multirotor electric vehicles (eVTOL) are 
also being developed because of their potential future 
role in urban air mobility [2]. The versatility provided 
by vertical lift, along with the mechanical simplicity 
of the multirotor configuration, and efficiency of 
distributed electric propulsion are the key reasons for 
their popularity. However, these aircraft are unstable 
when un-augmented and can be difficult to control in 
winds and turbulence. Additionally, one study of 
drone related air-traffic incidents in our national 
airspace (during 2013-2015) states that out of 340 
incidents where the drone type was identified in the 
reports, 246 were multirotor aircraft [3]. To help 
address the issue of airworthiness, a process for 

defining unmanned aircraft systems handling qualities 
has been proposed [4].  

Developing standard, well-vetted methods for 
modeling and simulation, prediction of 
flying/handling qualities, and control system design is 
critical for improving safety and quality control of 
these vehicles. Accurate dynamic modeling is an 
important element to providing predicted 
flying/handling qualities, and to developing safe, 
robust and reliable control systems for all air vehicles, 
but especially for unstable vehicles like multirotor 
vertical lift aircraft. To address the need for high 
quality models of multirotor vehicles, this paper 
demonstrates how system identification models and 
physics-based models can both provide flight accurate 
simulation models.  

Background and Purpose 

Although remotely piloted helicopters have existed 
since the 1960s [5], modern unmanned vertical lift 
unmanned aerial systems, which have onboard flight 
control systems and can navigate autonomously 
without a remote pilot in the loop, began development 
in the 1990s. Many of the early unmanned vertical lift 
systems were conventional helicopter configurations - 
either converted full-scale manned helicopters (Fire 
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Scout [6], Burro [7]) or miniaturized helicopters 
(Yamaha R50 [8], Ikarus [9]). As these systems relied 
on flight control systems for stability, as well as 
navigation, the development of accurate flight 
dynamics models was imperative to their success. 
High fidelity, flight accurate simulators were needed 
for design and test of flight control systems and 
autonomous operations.  As such, methods for 
modeling conventional helicopters were adapted for 
use in unmanned systems, where now physics-based 
and system identification modeling methods that had 
been established for manned helicopters could be 
directly applied to unmanned systems as described in 
Refs [6-9]. The role of system identification began to 
grow, as the importance of rapid development of 
unmanned aerial systems was emphasized [10]. 
System identification models and physics-based 
models can be used hand-in-hand, complimenting 
each other. System identification provide very 
accurate linear models at point conditions for accurate 
flight control design, and can also implemented in a 
quasi-nonlinear full envelope stitched model [12]. In 
contrast, physics-based models provide full envelope 
nonlinear dynamics for flight simulation but often 
need to be tuned to better match flight data. System 
identification can only be implemented after the 
aircraft is constructed and flying, whereas physics-
based models can provide dynamics models prior to 
flight in order to aid design decisions and development 
of the control system. Once flight test is possible, 
system identification can be used directly and/or to 
update the physics-based models [12, 13, 14].  

For conventional vertical lift aircraft, frequency 
domain system identification as implemented by the 
CIFER® software [15], and blade-element physics-
based models have been widely used. To address the 
need for accurate flight dynamics models of electric 
multirotor vehicles, it is natural to look to methods 
validated in the past for conventional single-rotor 
helicopters. And in fact, system identification has been 
shown to work well for small (52 cm hub-to-hub) 
electric quadcopters [15, 16], as well as midsize (127 
cm hub-to-hub) quadcopter, hexacopters and 
octacopters [17, 18]. As when applying to any new 
configuration, methods must be adapted to address the 
unique challenges and dynamics of the new 
configuration.  Herein, the authors describe how 
system identification and physics-based blade element 
models can be used to understand and accurately 
model the dynamics of multirotor electric unmanned 
aerial vehicles. For multirotor electric vehicles, this 
paper provides the following contributions:  

• Evaluation of fidelity for both physics-based and 
system-identification models compared to flight 
data collected at hover and forward flight  

• Documentation of differences in hover versus 
forward flight dynamics  

• Apply system identification results to improve 
physics-based models of multirotor electric 
vehicles  

• Classify the importance of key dynamic building 
blocks on the model fidelity of physics-based 
models, such as motor/rotor lag dynamics, inertia, 
and dynamic inflow   

Test Aircraft 

The model used as the example vehicle is the 
University of Portland hexacopter. It is based on a DJI 
flamewheel F550 frame and has a Pixhawk mini 
installed onboard. Detailed specifications for the 
aircraft are provided in Table 1 and it is pictured in 
Figure 1.  

 

Figure 1. University of Portland Hexacopter. 

Table 1. Specifications for Hexacopter. 
Aircraft 

Weight, with battery 1550 g 

Diameter (hub-to-hub) 55 cm 

Inertia (swing test):  

Ixx 0.0266 kg-m� 

Iyy 0.0266 kg-m� 

Izz 0.0498 kg-m� 

Brushless Motors (6 total) 

Weight 47 g / motor 

Kv Rating 930 RPM/V 

Electronic Speed Controllers (6 total) 

Current (Continuous) 30 A 

Weight (each) 32 g /ESC 

Blades (6 total) 

Diameter 10 in 

Pitch 4.7 in 

Weight (each) 10 g 
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Figure 2. Block Diagram of Hexacopter Control System and Frequency Sweep Input Location. 

 

MODELING METHODS 

Two modeling methods are used to demonstrate flight 
accurate modeling methods for multirotor aircraft – 
frequency domain system identification using CIFER® 
[19] and physics-based modeling methods using 
Rensselaer Multicopter Analysis Code (RMAC) [20]. 
The system identification process identifies linear 
dynamic models of the aircraft from flight test data, so 
is inherently flight-accurate. System identification and 
trim data are collected at various flight conditions, and 
then can be stitched into a full envelope model [12]. 
The RMAC model is a physics-based model, so is able 
to simulate nonlinear dynamics of the full envelope 
and can be easily configured to simulate different 
multirotor configurations. Linear models can be 
extracted from the RMAC model. However, the model 
still must be validated against flight data to ensure 
flight-accuracy. A more detailed description of each 
modeling method is given in the following subsections 
of this paper. 

Frequency-Domain System Identification 

Frequency domain system identification is a process 
which extracts state-space models of the vehicle from 
flight data. Several steps are taken to perform system 
identification of the multirotor vehicle:  

1. Frequency sweeps were collected in flight at 
hover and forward flight (5 m/s). The sweeps are 
automated and input at the mixer, as shown for the 
roll sweep in Figure 2. The data were collected 
with the autopilot in an attitude command mode 
(“stabilize-mode” in Ardupilot [21]). Inputs are 
measured at the input to the mixer, e.g. ���� for the 
roll axis sweep, as shown in Figure 2. The 
measured outputs include angular rates (�, �, 	
, 
angular attitudes ��, , �
, and accelerations ��� , �� , ��).  

2. Frequency responses of the multirotor vehicle are 
identified from the mixer to the aircraft response, 
for example �/����. Given that the mixer is 
somewhat nonlinear and not well documented, 
frequency responses of the mixer are also 
determined via system identification, from all 
inputs to all motors (e.g. for roll axis �������/����). The mixer is needed for comparison with 
RMAC which has inputs based on motor RPM, 
not mixer inputs. 

3. A mixing matrix is identified. This is not needed 
for model identification relative to the mixer 
inputs (Step 4) but allows conversion from the 
control axes inputs to the motor inputs, which is 
needed for later comparison to RMAC. The mixer 
matrix is identified in the following form:  

��
��
��
�������������� ������� ������� ������� ������� � !

!!
!!
"

#
��
��
��
$�� $�� $�� $��$�� $�� $�� $��$�� $�� $�� $��$�� $�� $�� $��$�� $�� $�� $��$�� $�� $�� $�� !

!!
!"

��
�� �������%���&�'(�)( !

!"  (1) 

where, for example, the $�� term would be 
identified by fitting a gain to the identified 
frequency response of �������/����.  

4. Model identification of state-space models 
relative to the mixer inputs (e.g. ���� in Figure 2), 
is performed by optimizing the parameters in the 
state-space model to best fit the identified 
frequency responses from flight data. At hover, 
decoupled state-space models of the vehicle 
dynamics are determined for pitch, roll, yaw and 
heave. The multirotor configuration, which has 
counter rotating propellers, has negligible 
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coupling of the vehicle dynamics at hover, but 
some coupling of the pitch/heave response in 
forward flight. The model structure includes the 
effect of the motor dynamics, which is modeled as 
first order lag with time constant *lag. Due to the 
decoupled nature of the hexacopter (because of its 

symmetry and counter rotating rotors) two 3-DOF 
models are identified. At hover, many of the pitch 
and roll parameters are constrained between the 
two decoupled structures at hover to model the 
symmetry of the dynamics. Equation (2) 
represents the longitudinal-heave dynamics and 
Eqn. (3) is lateral-directional dynamics:

     

��
���
�� ./0/�//1/��%1/�'� !

!!!
!" #

��
��
��
�23 2& �−05 + 27
 −89:;�5
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!!
!!
"

��
��
��
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!!
!" +

��
��
��
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!!
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!!
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The inputs to the model are the longitudinal 
control input ���%, lateral control input ����, yaw 
control input  ���& and the throttle control input ��'�, all measured just upstream of the mixer (in 
normalized units, %/100). The aircraft velocity 
states were longitudinal velocity . (ft/s), lateral 
velocity M (ft/s), vertical velocity 0 (ft/s). The 
aircraft angular velocity states were roll rate � 
(rad/s), pitch rate � (rad/s), and yaw rate 	 (rad/s). 
The attitude states were roll attitude � (rad), pitch 
attitude  (rad), and heading � (rad).  

Motor lag states 1��%, 1���, 1��& and 1�'� were 
introduced to each corresponding control input. 
The associated motor lag *��H (rad/s) was 
identified and constrained between all cases for 
both hover and forward flight. This motor lag 
represents the physical constraint that the motors 
cannot provide instantaneous change in thrust 
(due to the inertia of the motor and rotor blades). 
This motor lag as well as a lead term (R@ ��&′) 
affect the yaw rate response over the frequency 
range of interest. The motor lead frequency that 
affects the yaw response can be derived from Eqn. 
(3) and takes the form:  

 

*�(�Y # *��H Z1 + [\SQT[\SQT] ^ (4) 

This model structure and hover system 
identification of the University of Portland 
hexacopter is described more fully in Ref. [22].  

5. Model verification is performed against doublets 
collected in flight to ensure the model also has 
good predictive capability in the time domain.  

Rensselaer Multirotor Analysis Code 

The Rensselaer Multicopter Analysis Code (RMAC) 
[23] is a low-fidelity comprehensive analysis tool 
designed for use on multirotor vertical lift aircraft such 
as the UP hexacopter. The multirotor vehicle is 
modeled as a 6-DOF, second-order dynamic rigid 
body. The equations of motion are rewritten in first-
order form by introducing kinematic states for the 
position and attitude of the aircraft, whose derivatives 
are given by Eqns. (5-6), where the 3x3 matrix _ 
represents a rotation matrix which rotates a vector 
from the body-attached reference frame to the inertial 
reference frame, and the matrix ` expresses the rates 
of change of the 3-2-1 Euler angles in terms of the 
body angular velocities. 

 ab/U/c/  d # _ e.M0f # _ghi                     (5) 

 j�//�/ k # ` e��	f # `*hhi                     (6) 
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The linear and angular accelerations of the hexacopter 
are given by Eqns. (7-8), respectively. These equations 
are obtained through a simple summation of forces and 
moments about the hexacopter center of gravity. The 
forces acting on the aircraft include gravity, rotated 
into the body-attached reference frame, fuselage drag, 
rotor forces. Fuselage drag and rotor forces induce 
moments about the center of gravity, with moment 
arms 	lhhhi and 	mhhi, respectively. Additionally, the 
moments acting about the hub of each rotor, $n, are 
also included in Eqn. (8). Because these equilibrium 
equations are resolved in the non-inertial body-
attached axes, the Coriolis and inertial coupling effects 
muse be included in Eqn. (7) and Eqn. (8), 
respectively.  

a./M/0/ d # _o a008d + 1p qrstuvwxyv + z {n
�

n|�
} − *hhi×ghi (7)

a�/�/	/ d # ��� Z 	lhhhi×rstuvwxyv +        ∑ �$n + 	mhhi×{n
�n|� ^   − *hhi×�*hhi                                              (8)

Rotor forces and hub moments are calculated using 
blade element theory, and are a function of the speed 
of the rotor and the linear and rotational velocity of the 
rotor hub, which are, in turn, functions of the aircraft 
linear and angular velocity. Rotor induced velocities 
are modeled using a 10 state, 3x4 Peters-He dynamic 
wake model, with each rotor possessing its own unique 
states. The dynamics governing the induced flow are 
given by Eqns. (9-10). The matrices $, g, and O are 
available in closed form in Ref. [24]. In RMAC, the 
forcing function K is phase-averaged over a revolution, 
so the inflow states � and � are similarly phase-
averaged. 

�/ # Ω�M�
���K� − g��O�
���
 (9)

�/ # Ω�$�
���K� − g��O�
���
 (10)

To determine an equilibrium condition, Eqns. (7-10) 
must be solved such that the accelerations and inflow 
derivatives are zero. The trim variables available to 
RMAC are: the pitch and roll attitudes (used to trim 
longitudinal and lateral accelerations), the inflow 
states (used to solve the inflow equations), and the six 
rotor speeds Ωn (to solve the heave and moment 
equations). With 10 inflow states per rotor, this results 
in a system of 66 algebraic equations, to be solved with 
68 inputs. To reduce the space of trim solutions to a 
single unique condition, the multirotor coordinate 
transform [25], is used to rewrite Ωn in terms of 

aircraft-level “modes” (Eqn. (11)), where rotor 1 is on 
the front-right of the hexacopter, and rotor numbers 
increase counter-clockwise (as viewed from above). 

��
��
��
Ω�Ω�Ω�Ω�Ω�Ω� !

!!
!" #

��
��
��
�1 1/2 −√3/2 −√3/2 1/2 11 −1/2 −√3/2 √3/2 1/2 −11 −1 0 0 −1 11 −1/2 √3/2 −√3/2 1/2 −11 1/2 √3/2 √3/2 1/2 11 1 0 0 −1 −1 !

!!
!!
"

��
��
��

Ω5Ω��Ω��Ω��Ω��ΩY  !
!!
!"
     (11) 

The control modes associated with Ω�� and Ω�� are 
reactionless, and power-optimality is achieved by 
setting these to zero [25]. Thus, the number of trim 
variables is reduced to 66. 

Linear approximations to the dynamics are generated 
by numerically perturbing the aircraft dynamic states 
about an equilibrium condition, and using the resulting 
state derivatives to estimate stability derivatives via 
centered difference. Similarly, the control inputs are 
perturbed about an equilibrium condition to determine 
the control derivatives. This results in a linear, 72 state, 
4 input state-space model of Eqn. (12). Because the 
inflow dynamics are very high frequency and stable, 
the associated states are removed via static 
condensation, resulting in a 12 state, 4 input state 
space model (Eqn. (13)). 

Ib/�b/n L # I��� ������ ��� L �b�b� � + I`�̀� L . (12)

b/� # �̅b� + �̀. �̅ # ��� − ����������� �̀ # `� − �������� �̀ 
(13)

MODELS AT HOVER AND 5 M/S 

This section will describe the linear parametric models 
of the University of Portland hexacopter that were 
determined by system identification and RMAC. The 
model structure shown in Eqns. (2-3) is used in both 
cases. For the system identification model, theoretical 
accuracy parameters are provided with the identified 
stability derivatives. These parameters are critical to 
the model structure determination process – resulting 
in removal of stability and control derivatives that 
have poor theoretical accuracy and as such cannot be 
identified. Note that in the case of the physics-based 
RMAC model, theoretical accuracy parameters are not 
used because the parameters are extracted directly via 
perturbation methods from the RMAC model. In some 
cases, stability or control derivatives that were 
dropped from the model structure in system 
identification are present in the RMAC model because 
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the physics-based model provided a result for that 
parameter.  

System Identification Models 

Frequency sweeps were collected in flight at hover and 
at 5 m/s. The flight records were then processed using 
the CIFER® software to determine non-parametric 
frequency responses models from these data. Note that 
due to the largely decoupled nature of the hexacopter 
at hover, the responses were considered as single 
input. No multi-input processing to remove the effects 
of off-axis inputs was performed at hover. For forward 
flight, some aerodynamic and kinematic coupling is 
present, and as such multi-input analysis and 
processing was performed. The identification process 
directly provides the linearized stability derivatives 

and their theoretical accuracy parameters. The 
resulting hover and forward flight models are shown 
in Table 2. Note that any parameters not shown in the 
table have values of zero for both flight conditions. 
Cramer Rao (CR) and Insensitivity (I) are theoretical 
accuracy parameters.  It is desired that �_ < 20% and � < 10%, which indicates  the parameter is sensitive 
and uncorrelated  to any other parameters. When a 
parameter has borderline theoretical accuracy, it is 
retained in the model structure because the model fit 
requires that term for a good prediction of flight data.  
This was the case of the OP and $7 parameters in 
forward flight. However, at hover these parameters 
were very insensitive and as such were dropped from 
the model structure and set to zero without 
compromising model fit.  

Table 2. System ID Stability and Control Derivatives.   

 Hover 5 m/s 

Linear Model 

Elements 

STABILITY DERIVATIVES 

Value CR (%) I (%) Value CR (%) I (%) 23 (1/s) -0.221 - - -0.202 11.06 2.61 

N) (1/s) -0.221 - - -0.287 12.41 5.69 

=& (1/s) -0.338 21.1 10.3 -0.537 8.28 3.12 

O) (rad/(m-s)) -4.01 5.21 1.88 -3.18 10.4 2.96 OP (1/s) 0 - - -0.895 30.96 13.0 

$3 (rad/m-s) 4.01 5.21 1.88 2.05 22.12 1.97 $7 (1/s) 0 - - -0.357 41.4 21.09 

$& (rad/(m-s)) 0 - - -0.305 17.64 0.981 

R� (1/s) 0 - - -0.510 4.04 1.97 *��H (rad/s) 15 5.16 2.07 15 - - 

.� (m/s) 0 - - 5 - - 

0��p/;
 0 - - -0.5 - - 

� �deg
 0 - - -6 - - 

 CONTROL DERIVATIVES 

 Value CR (%) I (%) Value CR (%) I (%) =@DEF  � �/��
%/�55� -39.4 2.29 1.35 -39.5 2.90 1.03 

O@AQD  ���Y/��
%/�55 � 145 2.93 2.11 141 2.72 1.23 

$@ABC  ���Y/��
%/�55� 165 3.78 1.21 156 2.06 0.981 

$@DEF ���Y/��
%/�55 � 0 - - -5.51 8.70 2.15 

R@AQD  ���Y/��
%/�55 � 0 - - -3.62 4.81 2.4 

R@SQT′ ���Y/��
%/�55 � 31.2 9.68 1.51 30.3 4.04 1.97 

R@SQT  ���Y/��
%/�55� -22.9 6.03 0.914 -19.2 - - 

K (s) 0.02 9.43 4.71 0.02 - - 
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It should be noted that in several cases, the model was 
constrained to ensure that symmetry in the physics was 
retained. For example, at hover the model structure 
was setup so that 23 # N) and that O) # −$3. 
Additionally, the motor lag dynamics were fixed at 15 rad/s, which was determined based on the 
dynamics at hover and then fixed in the forward flight 
identification. As one may observe in Eqn. (3), the 
motor lag dynamics were supplemented with a lead 
input R@SQTV . The yaw input is generated by differential 

torque on the motors, not the motor thrust as in the 
other control inputs, and has been observed to have a 
lead-lag characteristic by Gong [17]. For this aircraft, 
the lead zero is at *�(�Y # 5.1 rad/s as calculated by 
Eqn. (4) and the lag pole at *��H # 15 rad/s. From 
Table 2, the following conclusions about the 
hexacopter dynamics in hover versus forward flight 
can be drawn:  

1. Speed damping derivatives O) and $3, which 
largely dominate the roll and pitch dynamics at 
hover, are somewhat reduced in forward flight.  

2. Pitch and roll damping (OP and $7) play a larger 
role in the dynamics of forward flight, however 
the theoretical accuracy is borderline, considering 
that ideally � < 10% and �_ < 20%. The authors 

observed that the models did not fit the flight data 
as well in forward flight with these parameters set 
to zero, so the parameters were retained in the 
model structure despite slightly degraded 
theoretical accuracy.  

3. Coupling between pitch and heave becomes more 
prevalent in forward flight, where $& and $@�BA derivatives are identified with non-zero 
values. This is similar in behavior to a helicopter 
at forward flight.   

4. Motor lag, lead and time delay are constant across 
both flight conditions.   

RMAC Models 

Stability derivatives were estimated by perturbing 
each of the dynamic states (including inflow states) 
from an equilibrium value, and numerically estimating 
the derivative using a centered difference formula. The 
estimated values of the stability derivatives are 
tabulated in Table 3. There are no motor dynamics 
included explicitly in the RMAC model, these are 
added as simple first-order filtering functions based on 
the system identification results. Parameters not 
shown below are near zero. The time delay as 
identified in system identification is also included as a 
filter on the input.  

 

Table 3. RMAC Predicted Stability and Control Derivatives. 

Linear Model 
Element 

Hover 5 m/s Linear Model 
Element 

Hover 5 m/s 

STABILITY DERIVATIVES CONTROL DERIVATIVES 

23 (1/s) -0.061 -0.35 =@ABC � �/u�
%/�55� 0 0 

N) (1/s) -0.061 -0.20 =@DEF � �/u�
%/�55� -47.1 -45.7 

NP (m/(rad s)) 0 -0.5 O@AQD ��x /u�
%/�55� 146 141 

=&(1/s) -0.93 1.28 O@¡¢£ ��x /u�
%/�55� 0 -4.66 

O) (1/s) -1.62 -1.29 $@ABC ��x /u�
%/�55� 137 133 

O� (1/s) 0 0.76 $@DEF ��x /u�
%/�55� 0 4.34 

$3 (1/s) 1.62 0.83 R@AQD ��x /u�
%/�55� 0 -0.99 

$¤ (rad/(m s)) 0 -0.16 R@¡¢£ ��x /u�
%/�55� 10.7 10.1 

R� (1/s) -0.16 -0.14 K �;
 0.02 0.02 

*��H(rad/s) 15 15 *�(�Y (rad/s) 5.1 5.1 

 



 
8

VALIDATION AGAINST FLIGHT 
DATA 

The fidelity of both the system identification and 
linearized RMAC models were carefully evaluated 
against flight data in the frequency and time domains. 
Validation was performed at hover and forward flight. 
The results for both system ID and RMAC were 
overlaid to provide insight to the predictive accuracy 
of each model, and highlight their relative abilities to 
simulate the measured flight dynamics.  

Frequency Domain Cost Functions 

Frequency domain validation of the models is 
performed qualitatively with visual overlay of the 
models against flight data, and quantitatively with a 
cost function. The cost function is calculated by a 
weighted sum of time and frequency domain errors 
[19]:  

¥n # �5%¦ ∑ §̈  I§H>©1ª��*
© − |1�*
|?� +¬C¦¬            §P �∠1ª��*
 − ∠1�*
��L                      (14) 

where |1|, ∠1 are the flight frequency response 
magnitude (dB) and phase (deg), ©1ª�©, ∠1ª� are the 
model frequency response magnitude (dB) and phase 
(deg). Magnitude and phase error weightings are §H #1 and §P # 0.01745. The coherence (²) weighting 
favors the most accurate (highest coherence) data 
more heavily in the cost function, where  §̈ #2.5�1 − ³¨
�.  
An individual cost function ¥n is calculated for each of ´ frequency responses that are included in the 
parametric model identification. A cost ¥n < 50  
indicates a very accurate model for that response, and 
a cost of ¥n < 100  is considered an acceptable level of 
fidelity. The average cost over all frequency responses 
is used as a metric of overall model fidelity, where  ¥�)( < 100 is recommended:  

¥�)( # �%µ¶ ∑ ¥n%µ¶n|�            (15) 

The cost functions are evaluated for both system ID 
and RMAC models, as shown in Table 4. The table 
shows that system ID models are in the excellent range 
for the most part, as expected considering they are 
extracted from flight data. Although the RMAC costs 

are significantly higher for the full frequency range,  
Table 4 shows that the RMAC models are near the 
range of ¥�)(  ≈ 100 if the low frequency (* <5  rad/s) portion of the response is not used in the cost 
function calculation (*�n% # 5
. This indicates that 
the physics-based models are accurate in the frequency 
range where the aircraft responds like a first order 
system and the low frequency unstable oscillatory 
modes are attenuated.  

The frequency response validation plots in Figure 3 - 
Figure 10 show the flight data, system identification 
models and RMAC models. These results clearly 
illustrate that the system identification models have an 
excellent fit, and that RMAC predicts the behavior 
well for most responses at * > 5 rad/s for both hover 
and forward flight. This can also be seen in the 
eigenvalues shown in Table 5 for hover and Table 6 
for forward flight. At these higher frequencies, the 
unstable oscillatory modes has attenuated and the 1st 
order modes as well as control power dominate the 
response, which RMAC predicts with good accuracy.  

Although the RMAC model does not well predict low 
frequency behavior, it does provide an acceptable fit 
in the frequency range that is most important for flight 
control. For control system design, the model should 

be accurate over the range of 
�� *� < *� < 3*�. To 

determine the expected crossover frequency of the 
hexacopter, Froude scaling relative to a representative 
full scale aircraft, the UH-60, is used.  For the UH-60, 
a reasonable crossover is 3 rad/s, and the scale factor 

is R # lE¹º»DB»E¹ºl¼½»¾¿ # 29.8, so that the hexacopter 

scale crossover frequency is *� # 3√R # 3√29.8 #16.4. This indicates that the RMAC model which has 
acceptable accuracy in the range of 5 < * < 50 rad/s 
would be sufficient for control system design, 
although building in additional stability margin would 
be prudent given the elevated model cost. Clearly, a 
system identification model will provide less 
uncertainty in the control system design, and allow for 
a more optimal performing control system with less 
overdesign. However, in the case where system 
identification models are not available or practical 
such as for first-flight control system gain tuning, 
evaluation of notional designs prior to construction, or 
for preliminary design studies – these results indicate 
that a physics-based model such as RMAC can 
provide an acceptable prediction of the behavior.  
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Table 4. Frequency Domain Model Validation Costs �Ã
 for Hover and Forward Flight.  

 Hover 5 m/s 

Frequency 

Response 

Frequency 
Range 
(rad/s) ÄÅÆÇ − ÄÅÈÉ  

Cost, Ã Frequency 
Range 
(rad/s) ÄÅÆÇ − ÄÅÈÉ  

Cost, Ã 

System 
ID 

RMAC RMAC with ÄÅÆÇ # Ê 
System 

ID  
 

RMAC RMAC with ÄÅÆÇ # Ê 

��/���% 0.6 – 22 50.4 535 143 9 – 35 52.9 270 270 ./ /���% 0.6 – 30 86.2 422 196 5 – 30 49.1 203 203 �/���% 0.6 – 50 58.9 190 136 4 – 50 63.0 148 139 ��/����  0.3 – 25 59.7 177 108 0.8 – 25 49.1 247 102 M//���� 0.5 – 30 79.9 689 91.5 1.1 – 20 43.9 287 104 �/����  0.3 – 50 52.0 496 90.8 4 – 35 34.6 125 123 	/���& 1.5 – 20 25.1 45.6 30.8 1 – 12 25.2 61.0 56.4 ��/��'� 0.6 – 25 13.1 68 82.4 0.7 – 22 17.4 94.1 66.3 0/ /��'� - - - - 0.4 – 12 47.0 551 82.1 ¥�)(  53.2 327 108  42.5 221 127 

 

Eigenvalues 

Table 5. Eigenvalues at Hover for System ID Model and RMAC Model.  
 

System ID RMAC 
 

Frequency 
(rad/s) 

Damping 
Ratio 

Frequency 
(rad/s) 

Damping 
Ratio 

Roll Mode (1st Order) 3.49 1 3.72 - 

Pitch Mode (1st Order) 3.49 1 3.72 - 

Yaw Mode (1st Order) 0 1 0.138 - 

Pitch Oscillating Mode 3.35 -0.48 2.55 -0.34 

Roll Oscillating Mode 3.35 -0.48 2.55 -0.34 

Heave Mode (1st Order) 0.338 1 0.731 - 

 

Table 6. Eigenvalues at 5 m/s for System ID Model and RMAC Model.  
 

System ID RMAC 
 

Frequency 
(rad/s) 

Damping 
Ratio 

Frequency 
(rad/s) 

Damping 
Ratio 

Roll Mode (1st Order) 3.75 - 5.26 - 

Pitch Mode (1st Order) 2.72 - 4.01 - 

Yaw Mode (1st Order) 0.51 - 0.13 - 

Pitch Oscillating Mode 2.55 -0.425 1.27 -0.545 

Roll Oscillating Mode 2.88 -0.445 2.02 -0.281 

Heave Mode (1st Order) 0.587 - 0.589 - 
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Hover Frequency Response Validation: System ID and RMAC 

      

Figure 3. Hover Validation for Longitudinal Velocity Rate (m/s2) and Pitch Rate (rad/s)                                        
to Longitudinal Input (%/100). 

 

Figure 4. Hover Validation of Longitudinal Acceleration (m/s2) to Longitudinal Input (%/100) and 
Vertical Velocity Rate (m/s2)  to Throttle Input (%/100). 
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Figure 5. Hover Validation of Lateral Velocity Rate (m/s2) and Roll Rate (rad/s)                                                  
to Lateral Input (%/100).  

 

Figure 6. Hover Validation of Lateral Acceleration (m/s2) to Lateral Input (%/100) and                                
Yaw Rate (rad/s) to Pedal Input (%/100). 
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Forward Flight Frequency Response Validation: System ID & RMAC 

 

Figure 7. Validation at 5 m/s of Longitudinal Acceleration (m/s2)                                                                                                          
and Pitch Rate (rad/s) to Longitudinal Input (%/100). 

 

Figure 8. Validation at 5 m/s for Vertical Acceleration (m/s2) and                                                                         
Vertical Velocity Rate (m/s2) to Throttle  Input (%/100). 
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Figure 9. Validation at 5 m/s for Lateral Velocity Rate (m/s2) and                                                                       
Roll Rate (rad/s) to Lateral Input (%/100). 

 

Figure 10. Validation at 5 m/s for Lateral Acceleration (m/s2) to Lateral Input (%/100)                                    
and Yaw Rate (rad/s) to Yaw Input (%/100). 
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TIME DOMAIN VALIDATION 

Time domain verification of system identification 
models is an important last step to validating a system 
identified model that was developed in the frequency 
domain [19]. In time domain verification it is critical 
to test the robustness of the model against a different 
data set using a different input, to ensure that the 
system ID model is not overly tuned to the data used 
to generate the frequency responses from which the 
model was fit. Robustness to input type is a key 
indicator that the models represent the physics, as 
opposed to being a generic curve fit of the data. For 
RMAC, time domain verification provides important 
insights on the predictive capability of the model that 
are difficult to visualize in the frequency domain. The 
time domain verification costs are shown in Table 7, 
using the equation:  

¥��� # Ë �%D%B ∑ �UY��� − U
oÌ�UY��� − U
%Dn|�        (16)   

The desired time domain cost for full-scale vehicles 
has been well vetted in Ref. [19], which states that 
excellent predictive accuracy is ¥��� < 1, although 1 < ¥��� < 2 is still considered acceptable. For this 
smaller vehicle, Froude scaling relative to the UH-60 

(R # lE¹º»DB»E¹ºl¼½»¾¿ # 29.8) was implemented to 

determine scale the costs. After scaling, it was desired 
that ¥��� < 5.5 for an excellent prediction but a range 
from 5.5 < ¥��� < 11 was still considered acceptable. 

A normalized cost function, known as the Theil 
inequality coefficient (TIC), does not need to be scaled 
with vehicle size:  1�� # ÍFÎÏ

Ë CDCB ∑ ��
µÌ��
CD�Ð ÑË CDCB ∑ ��£QDQ
µÌ��£QDQ
CD�Ð
    (17) 

This cost function can be considered as a percent error 
when multiplied by 100. For good predictive accuracy, 
it is recommended in [19] that 100�1��
 < 35%.  

The time domain cost functions for the system ID and 
RMAC models are shown in Table 7. The results 
indicate that the system ID model has excellent 
predictive accuracy, because its ¥��� and 1�� costs are 
well below the guidelines for both hover and forward 
flight. The excellent prediction of the system 
identification model can be seen in Figure 11- Figure 
13 for hover, and in Figure 14 - Figure 17 for the 5 m/s 
forward flight case. In most of these plots, the system 
ID model is nearly indistinguishable from the flight 
data. The RMAC models have  ¥��� and 1�� costs that 
are within the guidelines, indicating good predictive 
accuracy, for both hover and forward flight, in all 
responses except for the forward flight thrust response. 
As seen in Figure 11 - Figure 13, for hover, the 
prediction of the RMAC model is also quite good with 
some magnitude overshoot and phase differences 
relative to flight data, as also shown in the frequency 
domain. For forward flight, in Figure 14 - Figure 15, 
the pitch and roll RMAC responses have good 
predictive accuracy, with slightly larger overshoot 
relative the flight data than seen in hover. The vertical 
velocity response during the pitch doublet in Figure 14 
is somewhat over predicted but the response is small 
and as such the costs are still within the recommended 
range. The RMAC yaw response has the right shape 
and magnitude of response, as shown by Figure 16, but 
has some phasing mismatch, as also seen in the 
frequency domain. The yaw-to-roll coupling appears 
to be well predicted by RMAC in forward flight. The 
thrust response has reasonable on-axis prediction of 0/   
and �� (although with some overshoot) as shown in 
Figure 17, but the off-axis coupling of the pitch rate � and attitude  is significantly over-predicted.  

 

Table 7. Time Domain Verification Costs for System ID and RMAC Models at Hover and 5 m/s. 

 System ID RMAC 

 Hover Forward Flight Hover Forward Flight 

 ¥��� 100*TIC ¥��� 100*TIC ¥��� 100*TIC ¥��� 100*TIC 

LAT 1.9 5.3% 2.20 6.9% 2.5 6.6% 3.52 10% 

LON 1.5 4.1% 3.12 9.3% 2.8 7.2% 4.29 12% 

YAW 0.95 5.3% 2.6 15.8% 1.12 6.4% 3.4 21% 

THRUST 0.53 23% 1.67 35% 0.56 24% 8.93 71% 
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Figure 11. Hover Pitch-Axis Time Domain Verification. 

 

Figure 12. Hover Roll-Axis Time Domain Verification. 

R
e
s
p
o
n
s
e

R
e
s
p
o
n
s
e

R
e
s
p
o
n
s
e

R
e
s
p
o
n
s
e



 
16 

 

 

Figure 13. Hover Heave-Axis (left) and Yaw-Axis (right) Time Domain Verification. 

 

 

Figure 14. Forward Flight (5 m/s) Pitch-Axis Time Domain Verification. 
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Figure 15. Forward Flight (5 m/s) Roll-Axis Time Domain Verification. 

 

 

Figure 16. Forward Flight (5 m/s) Yaw-Axis Time Domain Verification. 
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Figure 17. Forward Flight (5 m/s) Heave-Axis Time Domain Verification. 

 

DISCUSSION OF DYNAMICS FOR 
MULTIROTOR VEHICLES 

The time and frequency domain results overall 
indicate that the RMAC provides acceptable accuracy 
for preliminary control system design – indicating that 
a blade element model with a 10 state Peters-He 
inflow, combined with system identified motor 
dynamics has reasonably good predictive accuracy in 
the frequency range of interest at hover and forward 
flight. Although there are areas for improvement, 
many of the areas where dynamic response mismatch 
occurs would be suppressed by a control system – such 
as low frequency responses and off-axis coupling. If 
relying on this model for control system design, it 
would be wise to design additional robustness into the 
control system by way of extra gain and phase margin 
to account for these discrepancies. Still, the match is 
reasonably good and in the range of acceptable but not 
excellent fit – this is really as good as you are likely to 
get with a physics-based model that has not been tuned 
with empirical corrections to better match flight data. 
System identification models can play a key role in 
updating physics-based models and provide guidance 
for model improvement. Key lessons learned by 
comparison of these two methods for modeling the 
dynamics of multirotor vehicles are presented in the 
following sub-sections of this paper. Several elements 

were found to be critical in achieving good model 
fidelity relative to the flight data:   

1. Speed and Rate Damping Stability Derivatives 
2. Longitudinal/Heave Coupling  
3. Mass Moment of Inertia 
4. Motor Dynamics 
5. Fuselage Drag 
6. Rotor Modeling 

Speed and Rate Damping Stability Derivatives 

The RMAC blade element model over-predicts the 
magnitude and phase of the on-axis �/���� and �/���% 
responses for frequencies below 5 rad/s, largely 
stemming from mismatch of the oscillatory mode 
frequencies as shown by the eigenvalues (Table 5) and 
seen in the frequency responses of Figure 3 and Figure 
5. The root cause of the frequency mismatch is related 
to over-prediction of angular rate damping (OP and  $7), with simultaneous under-prediction of the speed 
damping O) and  $3. By directly modifying the linear 
RMAC model, a significant improvement can be seen 
by reducing rate damping by a factor of two, while 
simultaneously increasing the speed damping by a 
factor of two as shown in Figure 18. These derivatives 
are all influenced by variations of inflow over the rotor 
disk as well as differences in inflow between rotors 
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which create relative pitch/roll moments. As such the 
discrepancy could possibly be due to interference 
effects, which are not included in the RMAC model, 
but the root cause is still an area of investigation.  

Longitudinal/Heave Coupling 

 A key area for future improvement of the RMAC 
model is related to the pitch to heave coupling in 
forward flight. The mismatch is very clear from the 
time verification, shown in Figure 17. This over-
prediction of coupling also creates a mismatch at 
frequencies < 5 rad/s in the 0/ /��'� frequency domain 

response, as seen in Figure 8. The low frequency 0/ /��'� is largely dominated by the kinematic coupling 
with the pitch response via the .�� term, and so is 
affected by the pitch/heave coupling. By eliminating 
the $& term from the linear RMAC model, both the 
frequency and time domain responses better predict 
the flight behavior as shown in Figure 19 and Figure 
20. The reason for this mismatch is likely a related 
phenomenon to the mismatch of the speed damping 
derivative $3, discussed in the previous section. It 
should be noted that the coupling control derivative $@�BA is retained unaltered in this analysis.  

 

 

 

Figure 18. Direct Adjustments to Linearized Hover RMAC Model to Better Capture Flight Response. 
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Figure 19. Adjusted Pitch/Heave Coupling in 5 m/s Linearized RMAC Model. 

 

Figure 20. Direct Adjustments to Pitch/Heave Coupling in the Forward Flight Linearized RMAC Model. 
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Mass Moment of Inertia 

A key element in accurate representation of any 
dynamics system, and a well-known source of 
uncertainty, is the mass moment of inertia. For system 
identification, the moment of inertia is identified as 
part of the lumped stability or control derivative. For 
example, the  $3 term is identified as a lumped term 
that includes the inertia and the aerodynamic effect in 
pitching moment due to longitudinal velocity: 

$3 # Ò ��SSÓ YÔY3           (18) 

As such, the inertia is fully correlated with the 
aerodynamic term and cannot be extracted via system 
identification.  

In the case of the multirotor vehicle, the geometry 
seems simple enough that approximations based on 
simplified geometry of the aircraft would be 
sufficiently close to the true. In practice, we found that 
simple approximations resulted in inertias that were 
within 5% of the swing test results as shown in Table 
8. Still, the average cost function of the physics-based 
model indicates that these small differences in inertia 
affect the overall model quality. The change in average 
cost shown in Table 9 is in the range considered 
significant, degrading the cost by Δ¥ # 9 for hover 
and Δ¥ # 15 for forward flight when using the 
approximate inertia. Clearly, to achieve excellent 
model accuracy, the inertias need to be very accurate 
and swing test results are warranted when practical.  

Table 8. Mass Moment of Inertia for the University of Portland Hexacopter.  

  Modeled As Mass ÕÉÉ ÕÖÖ Õ×× 

Center plate with sensors, 
and Pixhawk 

Thin disk with diameter of 16.5 cm 830 g 0.00565 0.00565 0.0113 

Arms (6) Point masses at 17.8 cm from center 57 g 0.0054 0.0054 0.0108 

Motors/Blades (6) Point masses at 27.25 cm from center 64 g 0.0143 0.0143 0.0285 

Total Sum of total inertia about CG  0.0254 0.0254 0.0506 

Swing Test Results from Swing Testing  0.0266 0.0266 0.0498 

% Difference   -4.5 % -4.5 % 1.6% 

 
 

Table 9. Frequency Domain Average Cost for RMAC with Estimated Inertia versus Swing Test. 

Flight Condition  

Average Cost Function Relative to Flight Data, ÃÈØÙ 

Swing Test Inertia Geometry Inertia Difference 
Hover 108 117 9 
5 m/s 127 142 15 

 

Motor Dynamics 

As described earlier in Eqns. (2-3), motor dynamics 
are included in the system identification model 
structure. As shown by Cheung [16] for a quadcopter 
and by Gong [17] for an octocopter, the inclusion of 
the motor dynamics are critical to accurately capturing 
higher frequency magnitude and phase response of 
multirotor vehicles. The pitch, roll and heave inputs 
are subject to a motor lag, as shown for example in the �/���� model: 

P@AQD # Ò P@AQD] Ó Ò ¬AQÚ�Ñ¬AQÚÓ   (19) 

where �/����V  is the response with instantaneous thrust 
(no motor lag). A similar structure is used for the pitch 

and thrust inputs. The yaw response is a combination 
of differential motor torques on alternating rotors, 
which produces a lead-lag motor dynamic:  

     
�@SQT # Ò �@SQT] Ó Ò¬A¢Q£¬AQÚ Ó Ò�Ñ¬A¢Q£�Ñ¬AQÚ Ó               (20) 

For the system ID model, these dynamics were 
identified as part of the model structure and it was 
determined that:  

*��H # 15 rad/s 

*�(�Y # 5.1 rad/s 

The RMAC physics-based model does not explicitly 
include these dynamics, which, if not corrected results 
in an over prediction of phase at * > 10 rad/s. 
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Considering that cross-over frequency is expected to 
be in the range of *� ≈ 15 rad/s, this phase loss is 
exceedingly important for potential control system 
design. Over-prediction of the phase will lead to an 
over-prediction of phase margin, a dangerous situation 
that could result in flight instability. As such, the 
system identified first order motor dynamics were 
included in the RMAC physics-based model.  

Modeling these motors explicitly would require 
knowledge of the electronic speed controller, motor 
and rotor inertia. These dynamics are most easily 
determined via system identification, an excellent 
example of system identification supplementing the 
physics-based model to improve its fidelity. In fact, 
these dynamics could be identified on a test stand as in 
[18] and then implemented prior to flight test to 
improve the physics-based model. Herein, we used the 
motor lag as identified in flight because it was 
available.  

As shown in Figure 21, the inclusion of the motor 
dynamics is critical for the physics-based and system 

identification models. Neither model can accurately 
capture the dynamics of the system without the motor 
dynamics present.   

Fuselage Drag 

Fuselage drag is a critical component of the dynamics 
of any VTOL aircraft, and multirotor aircraft are no 
exception. However, there are no first-principles 
models implemented in RMAC to estimate fuselage 
drag. Therefore, approximations of the fuselage drag 
must be made, ideally based on flight data. In this 
study, the fuselage flat plate drag area (0.0762 m2) was 
chosen such that 5 m/s trimmed forward flight 
required approximately 6 degrees of nose-down pitch 
attitude. The flat plate drag area directly influences the 
predicted values of stability derivatives 23 and N) in 
forward flight. Figure 22 shows the pitch rate and 
longitudinal velocity rate responses to longitudinal 
input for varying levels of fuselage drag. The amount 
fuselage drag does not significantly change the pitch 
rate responses, as expected, but the phase of the 
RMAC speed response  ./  would be significantly over 
predicted if fuselage drag were ignored.  

 

 

Figure 21. Effect of Motor Dynamics on Hover Frequency Responses. 
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Figure 22. Effect of Fuselage Drag on Predicted Longitudinal Dynamics.  

 

 

Figure 23. Effect of Rotor Model on Longitudinal Dynamics at Hover.  
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Rotor Modeling 

In early quadcopter work [26], [27] rotor thrust and 
torque were calculated using a simple formula, with 
both being proportional to the square of the rotor 
rotational speed, with proportionality constants 
extracted from static thrust tests on the rotors used: 

 1 # �Ω� (21) 
 Û # ÜΩ� (22) 

All other rotor forces and moments are assumed to be 
zero. The proportionality constants for thrust and 
torque were used throughout the flight envelope, with 
absolutely no adjustments based on the motion of the 
rotor relative to the surrounding air. Naturally, this 
model predicts control derivatives well in hover, but 
does not capture any of the stability derivatives that 
are associated with rotor forces or moments, such as $3 and O). Consequently, it does not capture well any 
of the low frequency bare airframe dynamics in hover 
or forward flight.  For example, Figure 23 shows the 
aircraft pitch rate response to longitudinal stick input. 
At high frequency, the Ω� model performs well, where 
the control derivative and motor dynamics (treated 
identically for Ω� as it is for RMAC in general) are 
dominant. However, at low frequency, the Ω� model 
dramatically over predicts the magnitude of the pitch 
rate response since it neglects the variation in inflow 
that occurs as the aircraft maneuvers.  

CONCLUSIONS 

This paper performed a careful evaluation of the 
predictive capabilities of system identification using 
CIFER® and a physics-based nonlinear blade-element 
model with 10 state Peters-He inflow as implemented 
in the Rensselaer Multicopter Analysis Code 
(RMAC). The models were validated against flight 
data in both the time and frequency domains for a 55 
cm diameter hexacopter at hover and forward flight (5 
m/s). Key conclusions from this work are given below.  

System Identification Model: 

1. Frequency domain system identification models 
are highly accurate at both hover and forward 
flight for multirotor vehicles, resulting models 
that produce nearly identical responses as flight.  

2. Speed damping derivatives O) and $3, which 
largely dominate the roll and pitch dynamics at 
hover, are somewhat reduced at forward flight, 
whereas pitch and roll damping (OP and $7) play 
a larger role in forward flight.  

3. Coupling between pitch and heave becomes more 
prevalent in forward flight, where $& and $@�BA derivatives are identified with non-zero 
values.  

4. Motor lag and time delay are constant across both 
flight conditions and are critical for accurate 
system identification.    

Physics-Based Blade Element RMAC Model:  

1. The inertia of the vehicle must be very accurate 
for a good prediction of the flight response. Mass 
moment of inertia determined by swing test of the 
hexacopter provided significant improvement in 
the RMAC predication.  

2. The motor lag and time delay dynamics are 
important elements of the high frequency phase 
response of the vehicle, and must be accounted for 
the physics-based model. An empirical first order 
model from system identification results was 
found sufficient to model these key dynamics.  

3. RMAC model under-predicts the speed 
derivatives ($3 , O)) and over-predicts the rate 
damping derivatives ($7 , OP), resulting in poor 
predictive accuracy at low frequency (* < 5
. 
Additionally, in forward flight, the pitch response 
due coupling with heave is significantly over-
predicted. 

4. RMAC model has sufficient accuracy in the 
frequency range of interest for flight control to 
support preliminary design.  
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