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ABSTRACT

Developing standard, well-vetted methods for madehnd simulation, prediction of flying/handlingaiities, and
control system design is critical for improving etgfand quality control of multirotor electric a@rivehicles. This
paper explores two methods for modeling the dynamia small (56 cm, 1.56 kg) hexacopter at howerfarward
flight. The first modeling method was system idgedition from flight data, the second method washgsics-based
blade element model with 10 state Peter-He inflewaluation of the fidelity for both the system-idiéination and
physics-based models was completed by comparisfhigld data at hover and forward flight. The rdsulere used
to classify the importance of key dynamic buildisigcks on the model fidelity, such as motor/rotg Hynamics,

inertia, and dynamic inflow.

INTRODUCTION

Vertical lift multirotor electric aerial vehiclesre
gaining interest in civilian and military sectors,
because of their utility in photography, law
enforcement, firefighting, package delivery,
surveillance and reconnaissance, among many other
applications in both the civilian and military sesxs.

In fact, the FAA predicts that use of commercialrn
model) use of small unmanned aerial systems (which
is largely dominated by multirotor electric vehg)e
will increase by a factor of 4 by 2022 [1]. Larger
vertical lift multirotor electric vehicles (eVTOLare
also being developed because of their potentiaréut
role in urban air mobility [2]. The versatility priaed

by vertical lift, along with the mechanical simptic

of the multirotor configuration, and efficiency of
distributed electric propulsion are the key reasons
their popularity. However, these aircraft are ubkta
when un-augmented and can be difficult to contmol i
winds and turbulence. Additionally, one study of
drone related air-traffic incidents in our national
airspace (during 2013-2015) states that out of 340
incidents where the drone type was identified ia th
reports, 246 were multirotor aircraft [3]. To help
address the issue of airworthiness, a process for
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defining unmanned aircraft systems handling qessiti
has been proposed [4].

Developing standard, well-vetted methods for
modeling and  simulation, prediction of
flying/handling qualities, and control system desig
critical for improving safety and quality controf o
these vehicles. Accurate dynamic modeling is an
important element to providing predicted
flying/handling qualities, and to developing safe,
robust and reliable control systems for all airickds,

but especially for unstable vehicles like multimoto
vertical lift aircraft. To address the need for hig
quality models of multirotor vehicles, this paper
demonstrates how system identification models and
physics-based models can both provide flight aceura
simulation models.

Background and Purpose

Although remotely piloted helicopters have existed
since the 1960s [5], modern unmanned vertical lift
unmanned aerial systems, which have onboard flight
control systems and can navigate autonomously
without a remote pilot in the loop, began developtme
in the 1990s. Many of the early unmanned vertiéal |
systems were conventional helicopter configurations
either converted full-scale manned helicopterse(Fir



Scout [6], Burro [7]) or miniaturized helicopters
(Yamaha R50 [8], Ikarus [9]). As these systemstkli
on flight control systems for stability, as well as
navigation, the development of accurate flight
dynamics models was imperative to their success.
High fidelity, flight accurate simulators were need

for design and test of flight control systems and
autonomous operations. As such, methods for
modeling conventional helicopters were adapted for
use in unmanned systems, where now physics-based
and system identification modeling methods that had
been established for manned helicopters could be
directly applied to unmanned systems as described i
Refs [6-9]. The role of system identification bedgan
grow, as the importance of rapid development of
unmanned aerial systems was emphasized [10].
System identification models and physics-based
models can be used hand-in-hand, complimenting
each other. System identification provide very
accurate linear models at point conditions for aateu
flight control design, and can also implemented in
quasi-nonlinear full envelope stitched model [18].
contrast, physics-based models provide full envelop
nonlinear dynamics for flight simulation but often
need to be tuned to better match flight data. Syste
identification can only be implemented after the
aircraft is constructed and flying, whereas physics
based models can provide dynamics models prior to
flight in order to aid design decisions and deveiept

of the control system. Once flight test is possible
system identification can be used directly andfor t
update the physics-based models [12, 13, 14].

For conventional vertical lift aircraft, frequency
domain system identification as implemented by the
CIFER® software [15], and blade-element physics-
based models have been widely used. To address the
need for accurate flight dynamics models of electri
multirotor vehicles, it is natural to look to meti®o
validated in the past for conventional single-rotor
helicopters. And in fact, system identification bhagn
shown to work well for small (52 cm hub-to-hub)
electric quadcopters [15, 16], as well as midsiizer(

cm hub-to-hub) quadcopter, hexacopters and
octacopters [17, 18]. As when applying to any new
configuration, methods must be adapted to addhess t
unique challenges and dynamics of the new
configuration. Herein, the authors describe how
system identification and physics-based blade ei¢me
models can be used to understand and accurately
model the dynamics of multirotor electric unmanned
aerial vehicles. For multirotor electric vehiclebis
paper provides the following contributions:

« Evaluation of fidelity for both physics-based and
system-identification models compared to flight
data collected at hover and forward flight

» Documentation of differences in hover versus
forward flight dynamics

» Apply system identification results to improve
physics-based models of multirotor electric
vehicles

» Classify the importance of key dynamic building
blocks on the model fidelity of physics-based
models, such as motor/rotor lag dynamics, inertia,
and dynamic inflow

Test Aircraft

The model used as the example vehicle is the
University of Portland hexacopter. It is based dvJa
flamewheel F550 frame and has a Pixhawk mini
installed onboard. Detailed specifications for the
aircraft are provided in Table 1 and it is pictuiaed
Figure 1.

Figure 1. University of Portland Hexacopter.

Table 1. Specifications for Hexacopter.

Aircraft
Weight, with battery 1550 g
Diameter (hub-to-hub) 55cm
Inertia (swing test):
Ixx 0.0266 kg-n
Iyy 0.0266 kg-m
Izz 0.0498 kg-nm
Brushless Motors (6 total)
Weight 47 g / motor
Kv Rating 930 RPM/V
Electronic Speed Controllers (6 total)
Current (Continuous) 30 A
Weight (each) 32 g/ESC
Blades (6 total)
Diameter 10 in
Pitch 4.7in
Weight (each) 109
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Figure 2. Block Diagram of Hexacopter Control System and Frequency Sweep Input Location.

MODELING METHODS

Two modeling methods are used to demonstrate flight
accurate modeling methods for multirotor aircraft —
frequency domain system identification using CIFER
[19] and physics-based modeling methods using
Rensselaer Multicopter Analysis Code (RMAC) [20].
The system identification process identifies linear
dynamic models of the aircraft from flight testalago

is inherently flight-accurate. System identificatiand

trim data are collected at various flight condispand
then can be stitched into a full envelope model].[12
The RMAC model is a physics-based model, so is able
to simulate nonlinear dynamics of the full envelope
and can be easily configured to simulate different
multirotor configurations. Linear models can be
extracted from the RMAC model. However, the model
still must be validated against flight data to emsu
flight-accuracy. A more detailed description of leac
modeling method is given in the following subseaio

of this paper.

Frequency-Domain System I dentification

Frequency domain system identification is a process
which extracts state-space models of the vehiclm fr
flight data. Several steps are taken to perfornesys
identification of the multirotor vehicle:

1.

Frequency sweeps were collected in flight at
hover and forward flight (5 m/s). The sweeps are
automated and input at the mixer, as shown for the
roll sweep in Figure 2. The data were collected
with the autopilot in an attitude command mode
(“stabilize-mode” in Ardupilot [21]). Inputs are
measured at the input to the mixer, &,g, for the

roll axis sweep, as shown in Figure 2. The
measured outputs include angular ratgs,(r),
angular attitudes(¢, 6,v), and accelerations

(ax' ay, az)-

Frequency responses of the multirotor vehicle are
identified from the mixer to the aircraft response,
for examplep/d,,:- Given that the mixer is
somewhat nonlinear and not well documented,
frequency responses of the mixer are also
determined via system identification, from all
inputs to all motors (e.g. for roll axi$n,tor,/
d14t)- The mixer is needed for comparison with
RMAC which has inputs based on motor RPM,
not mixer inputs.

3. A mixing matrix is identified. This is not needed
for model identification relative to the mixer
inputs (Step 4) but allows conversion from the
control axes inputs to the motor inputs, which is
needed for later comparison to RMAC. The mixer
matrix is identified in the following form:

_Smotorl_
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6
6
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where, for example, thé/,; term would be
identified by fitting a gain to the identified
frequency response 6f,o¢0r,/01a¢-

Model identification of state-space models
relative to the mixer inputs (e.g,,; in Figure 2),

is performed by optimizing the parameters in the
state-space model to best fit the identified
frequency responses from flight data. At hover,
decoupled state-space models of the vehicle
dynamics are determined for pitch, roll, yaw and
heave. The multirotor configuration, which has
counter rotating propellers, has negligible



coupling of the vehicle dynamics at hover, but
some coupling of the pitch/heave response in
forward flight. The model structure includes the
effect of the motor dynamics, which is modeled as
first order lag with time constaat,,. Due to the

decoupled nature of the hexacopter (because of its

(—wo + Xq) —gcos(6,)

symmetry and counter rotating rotors) two 3-DOF
models are identified. At hover, many of the pitch
and roll parameters are constrained between the
two decoupled structures at hover to model the
symmetry of the dynamics. Equation (2)
represents the longitudinal-heave dynamics and
Eqgn. (3) is lateral-directional dynamics:
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The inputs to the model are the longitudinal This model structure and hover system

control inputd,,,,, lateral control inpub,,;, yaw
control input §,,4, and the throttle control input
O:nr» all measured just upstream of the mixer (in
normalized units, %/100). The aircraft velocity
states were longitudinal velocity (ft/s), lateral
velocity v (ft/s), vertical velocityw (ft/s). The
aircraft angular velocity states were roll rate
(rad/s), pitch ratg (rad/s), and yaw rate(rad/s).
The attitude states were roll attituglrad), pitch
attituded (rad), and heading (rad).

Motor lag statesi,,, Tiqe, Tyqw and Ty, Were
introduced to each corresponding control input.
The associated motor lag,, (rad/s) was
identified and constrained between all cases for
both hover and forward flight. This motor lag
represents the physical constraint that the motors
cannot provide instantaneous change in thrust
(due to the inertia of the motor and rotor blades).
This motor lag as well as a lead termg}(aw’)

affect the yaw rate response over the frequency
range of interest. The motor lead frequency that
affects the yaw response can be derived from Eqn.
(3) and takes the form:

= 1 + “yaw 4
Wiead wlag + ( )

7
N5yaw

identification of the University of Portland
hexacopter is described more fully in Ref. [22].

5. Model verification is performed against doublets
collected in flight to ensure the model also has
good predictive capability in the time domain.

Rensselaer Multirotor Analysis Code

The Rensselaer Multicopter Analysis Code (RMAC)
[23] is a low-fidelity comprehensive analysis tool
designed for use on multirotor vertical lift airftrsuch

as the UP hexacopter. The multirotor vehicle is
modeled as a 6-DOF, second-order dynamic rigid
body. The equations of motion are rewritten intfirs
order form by introducing kinematic states for the
position and attitude of the aircraft, whose derixes

are given by Eqns. (5-6), where the 3x3 mafix
represents a rotation matrix which rotates a vector
from the body-attached reference frame to theiadert
reference frame, and the matBxexpresses the rates
of change of the 3-2-1 Euler angles in terms of the
body angular velocities.

X u
[y =RH=R17 (5)
7z | w
(0] p
6 =BH=35 (6)
1[, r



The linear and angular accelerations of the hexacop
are given by Eqgns. (7-8), respectively. These egusit
are obtained through a simple summation of foroés a
moments about the hexacopter center of gravity. The
forces acting on the aircraft include gravity, teth
into the body-attached reference frame, fuselagg,dr
rotor forces. Fuselage drag and rotor forces induce
moments about the center of gravity, with moment
arms 7, and 7;, respectively. Additionally, the
moments acting about the hub of each roky, are
also included in Eqn. (8). Because these equilibriu
equations are resolved in the non-inertial body-
attached axes, the Coriolis and inertial coupliffigots

muse be included in Egn. (7) and Eqgn. (8),
respectively.

u 0 6

[v =R"|0 <Dfuselage+ZFl> axv (D
w g i=1

N
1§)) ><Dfuselage +

a —axlz 8
o (M; + ﬁXFi)>

oo

Rotor forces and hub moments are calculated using
blade element theory, and are a function of thedpe
of the rotor and the linear and rotational velooityhe
rotor hub, which are, in turn, functions of theceérft
linear and angular velocity. Rotor induced vel@sti
are modeled using a 10 state, 3x4 Peters-He dynamic
wake model, with each rotor possessing its ownusiq
states. The dynamics governing the induced flow are
given by Eqns. (9-10). The matricsV, andL are
available in closed form in Ref. [24]. In RMAC, the
forcing functionr is phase-averaged over a revolution,
so the inflow statesx and g are similarly phase-
averaged.

9)
(10)

@ = QM) (¢ = V(L) ta)
B = QM) — V(L) TIB)

To determine an equilibrium condition, Eqgns. (7-10)
must be solved such that the accelerations anownf
derivatives are zero. The trim variables available
RMAC are: the pitch and roll attitudes (used tontri
longitudinal and lateral accelerations), the inflow
states (used to solve the inflow equations), ardstk
rotor speed«); (to solve the heave and moment
equations). With 10 inflow states per rotor, tlasults

in a system of 66 algebraic equations, to be solitd

68 inputs. To reduce the space of trim solutiona to
single unique condition, the multirotor coordinate
transform [25], is used to rewrit@; in terms of

aircraft-level “modes” (Eqgn. (11)), where rotorslan
the front-right of the hexacopter, and rotor nunsber
increase counter-clockwise (as viewed from above).

Q1 [1 1/2 —3/2 —3/2 1/2 1]Q,
[9]_j1 -1 0 0 -1 1| (11)
|g4| |1 -1/2 ~3/2 —V3/2 1/2 -1”325|

S| 11 1/2 V372 W3/2 172 1|
lQGJ Ly { 0/ 0/ —/1 e,

The control modes associated with, andQ,. are
reactionless, and power-optimality is achieved by
setting these to zero [25]. Thus, the number o tri
variables is reduced to 66.

Linear approximations to the dynamics are generated
by numerically perturbing the aircraft dynamic stat
about an equilibrium condition, and using the resgl
state derivatives to estimate stability derivatives
centered difference. Similarly, the control inpate
perturbed about an equilibrium condition to determni
the control derivatives. This results in a lingd state,

4 input state-space model of Eqn. (12). Because the
inflow dynamics are very high frequency and stable,
the associated states are removed via static
condensation, resulting in a 12 state, 4 inputestat
space model (Eqn. (13)).

Xr] _ [Arr ARI] XR BR] (12)
[xi]‘ A anllx]* (5]
).CR = A_xR + Eu
A= Agg — ARIAl_IlAIR (13)

B = Bp — Ap/Ai' By

MODELSAT HOVER AND 5M/S

This section will describe the linear parametriciels

of the University of Portland hexacopter that were
determined by system identification and RMAC. The
model structure shown in Eqgns. (2-3) is used ihbot
cases. For the system identification model, thézakt
accuracy parameters are provided with the idedtifie
stability derivatives. These parameters are cfitica
the model structure determination process — regulti
in removal of stability and control derivatives tha
have poor theoretical accuracy and as such camnot b
identified. Note that in the case of the physicsdaa
RMAC model, theoretical accuracy parameters are not
used because the parameters are extracted divetly
perturbation methods from the RMAC model. In some
cases, stability or control derivatives that were
dropped from the model structure in system
identification are present in the RMAC model beeaus



the physics-based model provided a result for that and their theoretical accuracy parameters. The

parameter. resulting hover and forward flight models are shown
in Table 2. Note that any parameters not showhen t
System | dentification M odels table have values of zero for both flight condifon

Cramer Rao (CR) and Insensitivity (I) are theomdtic
accuracy parameters. Itis desired that< 20% and

I < 10%, which indicates the parameter is sensitive
and uncorrelated to any other parameters. When a
parameter has borderline theoretical accuracys it i
retained in the model structure because the mddel f

Frequency sweeps were collected in flight at haver

at 5 m/s. The flight records were then processetjus
the CIFER software to determine non-parametric
frequency responses models from these data. Natte th
due to the largely decoupled nature of the hexaropt

at hover, the responses were considered as single : " :
input. No multi-input processing to remove the effe requires that term for a good prediction of fliglaita.

of off-axis inputs was performed at hover. For fard/ :hls V\éasﬂ_ﬂ;]et C: se of thb”t ind M, trr: arameters ”:
flight, some aerodynamic and kinematic coupling is orward Tight. However, at hover Inese parameters
present, and as such multi-input analysis and were very insensitive and as such were droppe_d from
processing was performed. The identification preces the mod_el_ strucdtulre;_t and set to zero without
directly provides the linearized stability derivets compromising modet fit.

Table 2. System ID Stability and Control Derivatives.

Hover 5m/s
Linear Model STABILITY DERIVATIVES
Elements Value CR (%) | (%) Value CR (%) | (%)
X, (1/5) 0.221 - - -0.202 11.06 2.61
Y, (1/5) 0.221 - - -0.287 12.41 5.69
Zy (1/5) -0.338 21.1 10.3 -0.537 8.28 3.12
L, (rad/(m-s)) -4.01 5.21 1.88 -3.18 10.4 2.96
Ly (1/5) 0 - - -0.895 30.96 13.0
M, (rad/m-s) 4.01 5.21 1.88 2.05 22.12 1.97
M, (1/5) 0 - - -0.357 41.4 21.09
M, (rad/(m-s)) 0 - - -0.305 17.64 0.981
N, (1/5) 0 - - 0510 4.04 1.97
Wiqg (rad/s) 15 5.16 2.07 15 - -
u, (m/s) 0 - - 5 - -
w,(m/s) 0 - - -0.5 - -
0, (deg) 0 - - -6 - -
CONTROL DERIVATIVES
Value CR (%) | (%) Value CR (%) I (%)
Zo (o /100) -39.4 2.29 1.35 -39.5 2.90 1.03
Loy, (Z/Zfl/(fo) 145 2.93 2.11 141 2.72 1.23
Ms,, . (’/“fl’(fg) 165 3.78 1.21 156 2.06 0.981
Ms,,, (o) 0 - - -5.51 8.70 2.15
Ny, (5 Z/dl’(fo) 0 - - -3.62 4.81 2.4
N, ' (%) 312 9.68 1.51 303 4.04 1.97
N5, (’/“fl’(fg) -22.9 6.03 0.914 -19.2 - -
T (s) 0.02 9.43 471 0.02 - .




It should be noted that in several cases, the mods!|
constrained to ensure that symmetry in the physis
retained. For example, at hover the model structure
was setup so thak, =Y, and thatlL, = —M,,.
Additionally, the motor lag dynamics were fixed at
15rad/s, which was determined based on the
dynamics at hover and then fixed in the forwarghfi
identification. As one may observe in Eqn. (3), the
motor lag dynamics were supplemented with a lead
inputNgyaw. The yaw input is generated by differential

torque on the motors, not the motor thrust as & th
other control inputs, and has been observed to have
lead-lag characteristic by Gong [17]. For this wft;

the lead zero is ab,,,; = 5.1 rad/s as calculated by
Egn. (4) and the lag pole at,,, = 15 rad/s. From
Table 2, the following conclusions about the
hexacopter dynamics in hover versus forward flight
can be drawn:

1. Speed damping derivatives, and M,,, which
largely dominate the roll and pitch dynamics at
hover, are somewhat reduced in forward flight.

2. Pitch and roll dampingl{, andM,) play a larger
role in the dynamics of forward flight, however
the theoretical accuracy is borderline, considering
that ideallyl < 10% andCR < 20%. The authors

observed that the models did not fit the flightadat
as well in forward flight with these parameters set
to zero, so the parameters were retained in the
model structure despite slightly degraded
theoretical accuracy.

3. Coupling between pitch and heave becomes more
prevalent in forward flight, whereM,, and
Ms,, derivatives are identified with non-zero
values. This is similar in behavior to a helicopter
at forward flight.

4. Motor lag, lead and time delay are constant across
both flight conditions.

RMAC Models

Stability derivatives were estimated by perturbing
each of the dynamic states (including inflow states
from an equilibrium value, and numerically estimgti
the derivative using a centered difference formtle
estimated values of the stability derivatives are
tabulated in Table 3. There are no motor dynamics
included explicitly in the RMAC model, these are
added as simple first-order filtering functionsédsn

the system identification results. Parameters not
shown below are near zero. The time delay as
identified in system identification is also inclublas a
filter on the input.

Table 3. RMAC Predicted Stability and Control Derivatives.

Linear Model Hover 5m/s Linear Model Hover 5mis
Element Element
STABILITY DERIVATIVES CONTROL DERIVATIVES
X, (Us) -0.061 -0.35 Zs (5 oy 0 0
Y, (Us) -0.061 -0.20 S (/‘“/1 fo) -47.1 -45.7
Y, (mi(rad s)) 0 05 e () 146 141
Z,,(U9) -0.93 1.28 5o (/fl/(jo) 0 -4.66
L, (Us) 1.62 1.29 - (r/afl/g;) 137 133
L, (U9 0 0.76 Sen. (r/afl/g;) 0 4.34
M, (Us) 1.62 0.83 - (r/afl/;;) 0 -0.99
My (radi(ms)) 0 -0.16 5o (/fl/(jo) 107 10.1
N, (US) 0.16 0.14 7 (s) 0.02 0.02
wqg(radls) 15 15 Wieqq (rad/s) 51 51




VALIDATION AGAINST FLIGHT
DATA

The fidelity of both the system identification and
linearized RMAC models were carefully evaluated
against flight data in the frequency and time dorsai
Validation was performed at hover and forward fligh
The results for both system ID and RMAC were
overlaid to provide insight to the predictive aamyr

of each model, and highlight their relative alsliito
simulate the measured flight dynamics.

Frequency Domain Cost Functions

Frequency domain validation of the models is
performed qualitatively with visual overlay of the
models against flight data, and quantitatively wath
cost function. The cost function is calculated by a
weighted sum of time and frequency domain errors
[19]:

Ji =2z w, [, (7@)] - IT@)I)* +

w, (LTC((») - 2T()) ] (14)

where |T|,«T are the flight frequency response
magnitude (dB) and phase (dedf,| <7, are the
model frequency response magnitude (dB) and phase
(deg). Magnitude and phase error weightingd/gre-
land W, = 0.01745. The coherencey} weighting
favors the most accurate (highest coherence) data
more heavily in the cost function, wher#/, =
2.5(1 —e")2.

An individual cost functior; is calculated for each of

i frequency responses that are included in the
parametric model identification. A cosk < 50
indicates a very accurate model for that respcase,

a cost of/; < 100 is considered an acceptable level of
fidelity. The average cost over all frequency resss

is used as a metric of overall model fidelity, wer
Jave < 100 is recommended:

]ave = _ZnTF (15)

The cost functions are evaluated for both system ID
and RMAC models, as shown in Table 4. The table
shows that system ID models are in the excellergea
for the most part, as expected considering they are
extracted from flight data. Although the RMAC costs

are significantly higher for the full frequency gm
Table 4 shows that the RMAC models are near the
range of J,,. =~ 100 if the low frequency ¢ <

5 rad/s) portion of the response is not used in tst c
function calculation d,,,;;, = 5). This indicates that
the physics-based models are accurate in the fnegue
range where the aircraft responds like a first orde
system and the low frequency unstable oscillatory
modes are attenuated.

The frequency response validation plots in Figure 3
Figure 10 show the flight data, system identificati
models and RMAC models. These results clearly
illustrate that the system identification modelsédian
excellent fit, and that RMAC predicts the behavior
well for most responses at> 5 rad/s for both hover
and forward flight. This can also be seen in the
eigenvalues shown in Table 5 for hover and Table 6
for forward flight. At these higher frequenciesgth
unstable oscillatory modes has attenuated andsthe 1
order modes as well as control power dominate the
response, which RMAC predicts with good accuracy.

Although the RMAC model does not well predict low
frequency behavior, it does provide an acceptable f
in the frequency range that is most important light

control. For control system design, the model sthoul

be accurate over the range -;(rbc < w, < 3w.. To

determine the expected crossover frequency of the
hexacopter, Froude scaling relative to a repretieata
full scale aircraft, the UH-60, is used. For thid-80,

a reasonable crossover is 3 rad/s, and the scate fa

is N = 2mub=toshub _ 798 5o that the hexacopter
DyH-60

scale crossover frequencyds = 3vVN = 3/29.8 =
16.4. This indicates that the RMAC model which has
acceptable accuracy in the rang&oef w < 50 rad/s
would be sufficient for control system design,
although building in additional stability margin wid

be prudent given the elevated model cost. Clearly,
system identification model will provide less
uncertainty in the control system design, and afiow

a more optimal performing control system with less
overdesign. However, in the case where system
identification models are not available or pradtica
such as for first-flight control system gain tuning
evaluation of notional designs prior to construttior

for preliminary design studies — these resultscati
that a physics-based model such as RMAC can
provide an acceptable prediction of the behavior.



Table 4. Frequency Domain Model Validation Costs (J) for Hover and Forward Flight.

Hover 5m/s
Frequency Frequency Cost, J Frequency Cost, J
Response Range Sysen RMAC RMAC with Range Sysem RMAC RMAC with
(rad/s) ID @iy = 5 (rad/s) D @iy = 5
Wmin — Wmax Wmin — Wmax
A/ S1on 0.6 — 22 50.4 535 143 9-35 52.9 270 270
u/8on 0.6 —30 86.2 422 196 5-30 49.1 203 203
q/610n 0.6 —50 58.9 190 136 4-50 63.0 148 139
ay /b1t 0.3-25 59.7 177 108 0.8-25 49.1 247 102
/814t 0.5-30 79.9 689 91.5 11-20 43.9 287 104
/81t 0.3-50 52.0 496 90.8 4-35 34.6 125 123
7/8yaw 1.5-20 25.1 45.6 30.8 1-12 25.2 61.0 56.4
az/Senr 0.6 -25 13.1 68 82.4 0.7-22 17.4 94.1 66.3
W/ 8y - - - - 0.4-12 47.0 551 82.1
Jave 53.2 327 108 42.5 221 127
Eigenvalues
Table 5. Eigenvalues at Hover for System ID Model and RMAC M odel.
System ID RMAC
Frequency Damping Frequency Damping
(rad/s) Ratio (rad/s) Ratio
Roll Mode (1% Order) 3.49 1 3.72 -
Pitch Mode (1% Order) 3.49 1 3.72 -
Yaw Mode (1% Order) 0 1 0.138 -
Pitch Oscillating Mode 3.35 -0.48 2.55 -0.34
Roll Oscillating Mode 3.35 -0.48 2.55 -0.34
Heave Mode (1% Order) 0.338 1 0.731 -
Table 6. Eigenvaluesat 5 m/sfor System ID Model and RMAC Model.
System ID RMAC
Frequency Damping Frequency Damping
(rad/s) Ratio (rad/s) Ratio
Roll Mode (1% Order) 3.75 - 5.26 -
Pitch Mode (1% Order) 2.72 - 4.01 -
Yaw Mode (1% Order) 0.51 - 0.13 -
Pitch Oscillating Mode 2.55 -0.425 1.27 -0.545
Roll Oscillating Mode 2.88 -0.445 2.02 -0.281
Heave Mode (1% Order) 0.587 - 0.589 -




Hover Frequency Response Validation: System ID and RMAC
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Figure 3. Hover Validation for Longitudinal Velocity Rate (m/s?) and Pitch Rate (rad/s)
to Longitudinal Input (%/100).
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Figure 4. Hover Validation of Longitudinal Acceleration (m/s?) to Longitudinal I nput (%/100) and

Vertical Velocity Rate (m/s?) to Throttle Input (%/100).
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Figure 6. Hover Validation of Lateral Acceleration (m/s?) to Lateral Input (%/100) and
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Forward Flight Frequency Response Validation: System ID & RMAC
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Figure7. Validation at 5 m/s of L ongitudinal Acceleration (m/s?)
and Pitch Rate (rad/s) to Longitudinal I nput (%/100).
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Figure 8. Validation at 5 m/sfor Vertical Acceleration (m/s?) and
Vertical Velocity Rate (m/s?) to Throttle Input (%/100).
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Figure9. Validation at 5 m/sfor Lateral Velocity Rate (m/s?) and
Roll Rate (rad/s) to Lateral I nput (%/100).
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Figure 10. Validation at 5 m/sfor Lateral Acceleration (m/s?) to Lateral Input (%/100)
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TIME DOMAIN VALIDATION

Time domain verification of system identification
models is an important last step to validating stesy
identified model that was developed in the freqyenc
domain [19]. In time domain verification it is ddal

to test the robustness of the model against ardiife
data set using a different input, to ensure that th
system ID model is not overly tuned to the dataduse
to generate the frequency responses from which the
model was fit. Robustness to input type is a key
indicator that the models represent the physics, as
opposed to being a generic curve fit of the data. F
RMAC, time domain verification provides important
insights on the predictive capability of the mothelt

are difficult to visualize in the frequency domalirne

time domain verification costs are shown in Table 7
using the equation:

Jrms = ﬁz:ﬁl(ydata - y)TW(ydata =) (16)
The desired time domain cost for full-scale vehicle
has been well vetted in Ref. [19], which stateg tha
excellent predictive accuracy Jjs,,s < 1, although
1 < Joms < 2 is still considered acceptable. For this

smaller vehicle, Froude scaling relative to the 8-

(N = W =29.8) was implemented to
UH-60

determine scale the costs. After scaling, it wasrdd
that/,.,s < 5.5 for an excellent prediction but a range
from5.5 < J,..s < 11 was still considered acceptable.

A normalized cost function, known as the Theil
inequality coefficient (TIC), does not need to baled
with vehicle size:

This cost function can be considered as a percent e
when multiplied by 100. For good predictive accyrac
it is recommended in [19] thab0(TIC) < 35%.

The time domain cost functions for the system Id an
RMAC models are shown in Table 7. The results
indicate that the system ID model has excellent
predictive accuracy, becausejits, andTIC costs are
well below the guidelines for both hover and fordvar
flight. The excellent prediction of the system
identification model can be seen in Figure 11- Fégu
13 for hover, and in Figure 14 - Figure 17 for She/s
forward flight case. In most of these plots, thetegn

ID model is nearly indistinguishable from the fligh
data. The RMAC models have,,; andTIC costs that
are within the guidelines, indicating good predieti
accuracy, for both hover and forward flight, in all
responses except for the forward flight thrust oese.

As seen in Figure 11 - Figure 13, for hover, the
prediction of the RMAC model is also quite goodtwit
some magnitude overshoot and phase differences
relative to flight data, as also shown in the freagy
domain. For forward flight, in Figure 14 - Figur§,1
the pitch and roll RMAC responses have good
predictive accuracy, with slightly larger overshoot
relative the flight data than seen in hover. Theival
velocity response during the pitch doublet in Fegls

is somewhat over predicted but the response isl smal
and as such the costs are still within the recont®aen
range. The RMAC yaw response has the right shape
and magnitude of response, as shown by Figureut6, b
has some phasing mismatch, as also seen in the
frequency domain. The yaw-to-roll coupling appears
to be well predicted by RMAC in forward flight. The
thrust response has reasonable on-axis prediction o

TIC = Trms anda, (although with some overshoot) as shown in
— — 17) Figure 17, but the off-axis coupling of the pitciter
Jrng PO WO [ Gaata) W Vdara) : it -
neng “i=1 ngno “i=1 data ata q and attitude is significantly over-predicted.
Table 7. Time Domain Verification Costsfor System ID and RMAC Modelsat Hover and 5 m/s.
System ID RMAC
Hover Forward Flight Hover Forward Flight
Jrms 100*TIC Jrms 100%TIC | Jyms 100*TIC Jrms 100*TIC
LAT 1.9 5.3% 2.20 6.9% 25 6.6% 3.52 10%
LON 15 4.1% 3.12 9.3% 2.8 7.2% 4.29 12%
YAwW 0.95 5.3% 2.6 15.8% 1.12 6.4% 3.4 21%
THRUST 0.53 23% 1.67 35% 0.56 24% 8.93 71%
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DISCUSSION OF DYNAMICS FOR
MULTIROTOR VEHICLES

The time and frequency domain results overall

indicate that the RMAC provides acceptable accuracy

for preliminary control system design — indicatthgt

a blade element model with a 10 state Peters-He

inflow, combined with system identified motor

dynamics has reasonably good predictive accuracy in

the frequency range of interest at hover and fodwar
flight. Although there are areas for improvement,

were found to be critical in achieving good model
fidelity relative to the flight data:

Speed and Rate Damping Stability Derivatives
Longitudinal/Heave Coupling

Mass Moment of Inertia

Motor Dynamics

Fuselage Drag

Rotor Modeling

oukrwnE

Speed and Rate Damping Stability Derivatives

many of the areas where dynamic response mismatch

occurs would be suppressed by a control systerohi- su
as low frequency responses and off-axis couplifg. |
relying on this model for control system design, it
would be wise to design additional robustnesstimto
control system by way of extra gain and phase margi
to account for these discrepancies. Still, the métc
reasonably good and in the range of acceptabladiut
excellent fit — this is really as good as you #ely to

get with a physics-based model that has not bewdtu
with empirical corrections to better match fliglttal.
System identification models can play a key role in
updating physics-based models and provide guidanc
for model improvement. Key lessons learned by

The RMAC blade element model over-predicts the
magnitude and phase of the on-axi$,,, andq/d;,,
responses for frequencies below 5 rad/s, largely
stemming from mismatch of the oscillatory mode
frequencies as shown by the eigenvalues (Tablad) a
seen in the frequency responses of Figure 3 andé-ig
5. The root cause of the frequency mismatch isedla
to over-prediction of angular rate dampinig, (and
M,), with simultaneous under-prediction of the speed
dampingL,, and M,,. By directly modifying the linear
RMAC model, a significant improvement can be seen
e by reducing rate damping by a factor of two, while
simultaneously increasing the speed damping by a

comparison of these two methods for modeling the factor of two as shown in Figure 18. These denesti

dynamics of multirotor vehicles are presented i th
following sub-sections of this paper. Several eletse

are all influenced by variations of inflow over tiwgor
disk as well as differences in inflow between rstor

18



which create relative pitch/roll moments. As suah t
discrepancy could possibly be due to interference
effects, which are not included in the RMAC model,
but the root cause is still an area of investigatio

L ongitudinal/Heave Coupling

A key area for future improvement of the RMAC

model is related to the pitch to heave coupling in
forward flight. The mismatch is very clear from the

time verification, shown in Figure 17. This over-

prediction of coupling also creates a mismatch at
frequencies < 5 rad/s in thie/ 6., frequency domain

response, as seen in Figure 8. The low frequency
Ww/8:p, is largely dominated by the kinematic coupling
with the pitch response via thg,g term, and so is
affected by the pitch/heave coupling. By elimingtin
the M,, term from the linear RMAC model, both the
frequency and time domain responses better predict
the flight behavior as shown in Figure 19 and Fégur
20. The reason for this mismatch is likely a redate
phenomenon to the mismatch of the speed damping
derivative M,,, discussed in the previous section. It
should be noted that the coupling control derivativ
My, is retained unaltered in this analysis.

1 1
808 M\ 808 m
é 0.6 E 0.6
804 S04

0.2 0.2

107" 10° 10 102 10 10° 10 102
Frequency (rad/s) Frequency (rad/s)
— Flight Data

--—-RMAC (Lv= 247, Lp=1 .94)
Modified RMAC (LV =4.94, Lp= -0.97)

Figure 18. Direct Adjustmentsto Linearized Hover RMAC Model to Better Capture Flight Response.
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Mass Moment of Inertia

A key element in accurate representation of any
dynamics system, and a well-known source of
uncertainty, is the mass moment of inertia. Fotesyis
identification, the moment of inertia is identified
part of the lumped stability or control derivativeor
example, theM,, term is identified as a lumped term
that includes the inertia and the aerodynamic effec
pitching moment due to longitudinal velocity:

1

M= ()

As such, the inertia is fully correlated with the
aerodynamic term and cannot be extracted via system
identification.

am

du

(18)

In the case of the multirotor vehicle, the geometry
seems simple enough that approximations based on
simplified geometry of the aircraft would be
sufficiently close to the true. In practice, we fiothat
simple approximations resulted in inertias thatever
within 5% of the swing test results as shown inl&ab
8. Still, the average cost function of the physiesed
model indicates that these small differences intie
affect the overall model quality. The change inrage
cost shown in Table 9 is in the range considered
significant, degrading the cost b = 9 for hover
and AJ =15 for forward flight when using the
approximate inertia. Clearly, to achieve excellent
model accuracy, the inertias need to be very ateura
and swing test results are warranted when practical

Table 8. Mass Moment of Inertia for the University of Portland Hexacopter.

Modeled As Mass I 1y, I,,

Center plate with sensors, | iy ik with diameter of 16.5 cm 830 g 0.00565 0.00565 0.0113
and Pixhawk

Arms (6) Point masses at 17.8 cm from center 57g  0.0054 05@.0 0.0108

Motors/Blades (6) Point masses at 27.25 cm fromcen 64 g 0.0143 0.0143 0.0285

Total Sum of total inertia about CG 0.0254 0.0254 0.0506
Swing Test Results from Swing Testing 0.0266 0.0266 0.0498
% Difference -4.5% -4.5% 1.6%

Table 9. Frequency Domain Average Cost for RMAC with Estimated I nertia versus Swing Test.
Average Cost Function Relative to Flight Data, ] ;..

Flight Condition Swing Test Inertia Geometry Inertia Difference
Hover 108 117 9
5m/s 127 142 15

Motor Dynamics

As described earlier in Egns. (2-3), motor dynamics
are included in the system identification model
structure. As shown by Cheung [16] for a quadcopter
and by Gong [17] for an octocopter, the inclusidn o
the motor dynamics are critical to accurately captu
higher frequency magnitude and phase response of
multirotor vehicles. The pitch, roll and heave itgu
are subject to a motor lag, as shown for examptlean

p/8,4: model:
P ) Llag
Sl’at s+a)lag

wherep/§;,, is the response with instantaneous thrust
(no motor lag). A similar structure is used for fiteh

P _
Siat

19)

21

and thrust inputs. The yaw response is a combimatio
of differential motor torques on alternating rotors
which produces a lead-lag motor dynamic:

=< r )(wlead) (5+wlead)
6£7aw Wiag Stwiag
For the system ID model, these dynamics were

identified as part of the model structure and iswa
determined that:

r

(20)

Syaw

wyqg = 15 rad/s
Wieqq = 5.1 rad/s

The RMAC physics-based model does not explicitly
include these dynamics, which, if not correctedilites
in an over prediction of phase abt > 10 rad/s.



Considering that cross-over frequency is expeated t
be in the range ofy, = 15 rad/s, this phase loss is
exceedingly important for potential control system
design. Over-prediction of the phase will lead to a
over-prediction of phase margin, a dangerous sitnat
that could result in flight instability. As suchhet
system identified first order motor dynamics were
included in the RMAC physics-based model.

Modeling these motors explicitty would require
knowledge of the electronic speed controller, motor
and rotor inertia. These dynamics are most easily
determined via system identification, an excellent
example of system identification supplementing the
physics-based model to improve its fidelity. Intfac
these dynamics could be identified on a test sterid
[18] and then implemented prior to flight test to
improve the physics-based model. Herein, we used th
motor lag as identified in flight because it was
available.

As shown in Figure 21, the inclusion of the motor
dynamics is critical for the physics-based andesyst

identification models. Neither model can accurately
capture the dynamics of the system without the moto
dynamics present.

Fuselage Drag

Fuselage drag is a critical component of the dynami
of any VTOL aircraft, and multirotor aircraft ar@ n
exception. However, there are no first-principles
models implemented in RMAC to estimate fuselage
drag. Therefore, approximations of the fuselage dra
must be made, ideally based on flight data. In this
study, the fuselage flat plate drag area (0.0792vas
chosen such that 5 m/s trimmed forward flight
required approximately 6 degrees of nose-down pitch
attitude. The flat plate drag area directly infloesthe
predicted values of stability derivativeg andY,, in
forward flight. Figure 22 shows the pitch rate and
longitudinal velocity rate responses to longitudlina
input for varying levels of fuselage drag. The amtou
fuselage drag does not significantly change thehpit
rate responses, as expected, but the phase of the
RMAC speed response would be significantly over
predicted if fuselage drag were ignored.
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Figure 21. Effect of Motor Dynamicson Hover Frequency Responses.
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Rotor Modeling

In early quadcopter work [26], [27] rotor thrustdan
torque were calculated using a simple formula, with
both being proportional to the square of the rotor
rotational speed, with proportionality constants
extracted from static thrust tests on the rotoeslus

T = aQ?
0 = bQ?

(21)
(22)

All other rotor forces and moments are assumeceto b
zero. The proportionality constants for thrust and
torque were used throughout the flight envelopéh wi
absolutely no adjustments based on the motioneof th
rotor relative to the surrounding air. Naturallijst
model predicts control derivatives well in hoveut b
does not capture any of the stability derivativiest t
are associated with rotor forces or moments, ssch a
M,, andL,,. Consequently, it does not capture well any
of the low frequency bare airframe dynamics in lmove
or forward flight. For example, Figure 23 shows th
aircraft pitch rate response to longitudinal siigut.

At high frequency, th@2 model performs well, where
the control derivative and motor dynamics (treated
identically for Q? as it is for RMAC in general) are
dominant. However, at low frequency, thé model
dramatically over predicts the magnitude of thelpit
rate response since it neglects the variation fioun
that occurs as the aircraft maneuvers.

CONCLUSIONS

This paper performed a careful evaluation of the
predictive capabilities of system identificationings
CIFER® and a physics-based nonlinear blade-element
model with 10 state Peters-He inflow as implemented
in the Rensselaer Multicopter Analysis Code
(RMAC). The models were validated against flight
data in both the time and frequency domains fosa 5
cm diameter hexacopter at hover and forward fl{ght
m/s). Key conclusions from this work are given belo

System I dentification M odel:

1. Frequency domain system identification models
are highly accurate at both hover and forward
flight for multirotor vehicles, resulting models
that produce nearly identical responses as flight.

Speed damping derivativels, and M,,, which
largely dominate the roll and pitch dynamics at
hover, are somewhat reduced at forward flight,
whereas pitch and roll damping,(andM,) play

a larger role in forward flight.
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3. Coupling between pitch and heave becomes more
prevalent in forward flight, whereM,, and
Mg, derivatives are identified with non-zero
values.

4. Motor lag and time delay are constant across both

flight conditions and are critical for accurate
system identification.

Physics-Based Blade Element RMAC Model:

1. The inertia of the vehicle must be very accurate
for a good prediction of the flight response. Mass
moment of inertia determined by swing test of the
hexacopter provided significant improvement in

the RMAC predication.

The motor lag and time delay dynamics are
important elements of the high frequency phase
response of the vehicle, and must be accounted for
the physics-based model. An empirical first order
model from system identification results was
found sufficient to model these key dynamics.

RMAC model under-predicts the speed
derivatives ¥, L,) and over-predicts the rate
damping derivativesM,, L,), resulting in poor
predictive accuracy at low frequency K 5).
Additionally, in forward flight, the pitch response
due coupling with heave is significantly over-
predicted.

RMAC model has sufficient accuracy in the
frequency range of interest for flight control to
support preliminary design.
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