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ABSTRACT
Existing Structural Health Monitoring (SHM) techniques generally depend on deterministic parameters in order to
detect, localize, and quantify damage. This limits the applicability of such systems in real-life situations, where
stochastic, time-varying structural response, as well as complex damage types immersed in operational/environmental
uncertainties are almost always encountered. Thus, there lies a need for the proposal of statistical quantities and
methods for assessing structural health. That is, a holistic probabilistic SHM framework involving damage detection,
localization, and quantification, is due if such systems are to become standard on VTOL platforms. In this work, a
novel probabilistic approach for active-sensing acousto-ultrasound SHM targeting damage detection and quantification
is proposed based on stochastic non-parametric time series representations. Statistical signal processing techniques
are used to formulate statistical hypothesis tests, based on which a decision can be made to whether a component
is healthy or damaged within pre-defined confidence bounds. The methods presented herein can also be used for
damage quantification. The proposed framework is first applied to a notched Aluminum coupon with different damage
sizes within an active-sensing, local “hot-spot” monitoring framework. After that, experimental data collected over a
stiffened Aluminum panel, representing a sub-scale fuselage component, is analyzed using the probabilistic framework
for validation of the proposed methods on more real-life structures. Results show the advantage of the proposed
techniques in citing confidence to the decision-making process when compared with state-of-the-art damage indicators.
In addition, insights into damage localization within a probabilistic framework are also presented, which may be used
as a preliminary step to damage localization algorithms, decreasing the computational cost, and increasing the accuracy
of imaging techniques under uncertainty.

INTRODUCTION

Structural Health Monitoring (SHM) for VTOL systems has
seen a lot of development in recent years. From the design
of “smart” line-replaceable units (Refs. 1,2) to the integration
of embedded sensors within fuselage and blade components
(Refs. 3, 4), researchers in the Health and Usage Monitoring
Systems (HUMS) community are pushing towards achieving
online, full system state awareness. Nonetheless, several chal-
lenges persist on the road to achieve this on the structural
level. As a global aim, future VTOL aircraft with system-
level state awareness should be capable of: detecting, local-
izing, and quantifying incipient damage at the earliest stages
possible. In this context, existing SHM methods face chal-
lenges due to (i) stochastic time-variant and non-linear struc-
tural response (Refs. 4–6), and (ii) incipient damage types and
complex failure modes that can be easily masked by the ef-
fects of varying states (Ref. 7), especially in a VTOL environ-
ment, where component loading frequencies per flight hour
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maybe an order of magnitude more compared to fixed-wing
platforms (Ref. 8). Thus, there lies a need for the development
of a probabilistic SHM framework, where proper analysis,
modeling, and understanding of stochastic signals under vary-
ing states and damage characteristics (type/size/orientation) is
achieved for enabling full transformation to condition-based
maintenance schemes and life-cycle state awareness.

To this end, the problem of incorporating statistical infer-
ence within an active sensing, guided-waves SHM framework
has been addressed through two contexts: statistical distribu-
tion of damage-related features (also known as probabilistic
SHM), and reliability quantification of SHM systems.

The postulation of statistical significance of SHM measure-
ments can be realized via the development of probabilistic
SHM methods. Studies utilizing probabilistic active-sensing
techniques in SHM are quite limited compared to those using
deterministic approaches, although probabilistic vibration-
based SHM methods have attracted the interest of the research
community. A recently-proposed active sensing method for
achieving online probabilistic SHM involves the application
of Bayes’ theorem (Ref. 9). In this approach, a specific model
(mostly parametric) is updated based on the likelihood func-
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tion applied to existing data, which compares the probabil-
ity distribution of the previous signal features space to cur-
rent signals. The distribution of those damage-related fea-
tures can either be assumed, or formulated using distribu-
tion estimation techniques. Todd and coworkers (Ref. 10)
used this approach for localizing simulated damages (9 holes)
on a stiffened aluminum panel with 7 piezoelectric sensors
within a pitch-catch framework. Assuming the raw data repre-
sents stochastic Gaussian processes, systematic data process-
ing was done to transform each raw waveform into a feature,
which is governed by Rayleigh statistics. After that, a uniform
prior probability on the location of the holes was assumed,
and then updated using the updated features space and dis-
tribution parameters. Another similar approach by the same
group of researchers (Ref. 11) included kernel density esti-
mation to achieve the probability density function of the lo-
cations of damage (instead of assuming normal distribution),
and the use of the well-known statistical techniques of noise-
immersed signal detection (Ref. 12) in order to apply the the-
oretical Receiver Operating Characteristics (ROC) curves of
binary hypothesis testing to a Localizer statistic, formulating
an LOC. Equipped with either of these methods for estimating
the distribution of damage locations using the features space,
Bayesian updating was applied as indicated above. Note that,
using the theoretical ROC approach, other statistics can be
used for damage detection, such as the Power Spectral Density
(PSD) using the Fast Fourier Transform (FFT) or the Short
Time Fourier Transform (STFT) algorithms (Ref. 13). On the
damage quantification side, Yang et al. (Refs. 14, 15) used
Bayesian updating for crack size quantification in 6 Al plates
having notches with increasing lengths within an active sens-
ing approach. Normalized amplitude and phase changes in the
first-arrival wave mode (S0) in the signals were used as the pa-
rameters in a linear model that predicted damage size. Having
initially calculated the parameter values from the experiments,
Monte Carlo simulations were then used to fit the parame-
ters to a probability distribution to be able to proceed with
Bayesian updating of the notch size model. Similar strategies
have been demonstrated for estimating delamination propaga-
tion in composites (Ref. 16). The major advantage of all of
the reviewed approaches lies in the direct extraction of confi-
dence intervals for the detection, localization, and quantifi-
cation capabilities of SHM. Furthermore, these approaches
show promise in quantifying reliability without the need for
NDE testing.

As for reliability quantification, most approaches proposed to
date are examined through an analogy to the well-developed
Probability of Detection (POD) methodology for Non-
destructive Evaluation (NDE) reliability assessment (Ref. 17).
Because the NDE POD estimation process, as outlined in
MIL-HDBK-1823A (Ref. 18), cannot be directly applied to
SHM systems due to the issue of dependant measurements
of a single SHM system, as well as the impractical na-
ture and cost of installing many independent SHM systems
(Refs. 17, 19, 20), many of the conducted studies attempt to
adapt available SHM data to the NDE POD standards. On
the experimental side, some researchers proposed the use of

parametric models for each SHM unit in order to incorporate
dependence into the POD calculation method (Ref. 21), whilst
others directly extracted data from many coupons outfitted
with identical SHM systems (Ref. 17) in order to quantify the
reliability of such an approach in POD estimation. On the
computational side, researchers proposed the use of a Model-
Assisted POD (MAPOD) (Refs. 19,22) in order to generate in-
dependent SHM data for direct application of POD standards.
Using models, identical properties of the different SHM sys-
tems would prevent the incorporation of system-induced mea-
surement error, while assuring independence. Indeed, the ma-
jority of studies applying POD to SHM use some sort of a
Health Indicator (HI) in order to interrogate a specific struc-
ture, i.e. a deterministic metric that allows only for a dam-
age/no damage decision scheme with no regard to estimation
uncertainty or operational/environmental conditions. Thus,
the formulation of POD in this case only allows for reliability
quantification. There lies a lack of formulating a statistical in-
ference framework that is inherent to the SHM metrics being
used for damage detection, quantification, and localization,
i.e. there are no treatments to the intrinsic statistical proper-
ties associated with active-sensing damage-sensitive features
within SHM measurements.

As indicated in the discussion above, in order to achieve prob-
abilistic SHM, a statistical quantity needs to be defined for the
system so that probabilistic information can be extracted. This
implies the existence of some stochastic model of the system,
which describes system dynamics within a statistical frame-
work. In this context, statistical time series methods have
been proposed and attracted the interest of the vibration-based
SHM community in order to model the stochastic vibrational
response of a structure and enable damage detection, localiza-
tion and quantification with predetermined confidence inter-
vals (Refs. 23–25). In such methods, both parametric and non-
parametric models can be used (Refs. 23, 26). Using finitely-
parametrized representations of the system, parametric time
series models may result in improved accuracy compared to
their non-parametric counterparts, and their parameters may
be correlated to physical system parameters, such as modal
parameters (Ref. 27). However, the identification of paramet-
ric models is generally more complex and requires significant
user experience (Ref. 23). On the other hand, non-parametric
time series models are straightforward in terms of implemen-
tation, require little-to-no user expertise in model building and
assessment, and are computationally efficient. However, the
added simplicity comes at the potential cost of accuracy and
robustness to varying operating/environmental conditions and
uncertainty.

In this work, a novel probabilistic approach for active-
sensing acousto-ultrasound SHM targeting damage detection
and quantification is proposed based on the non-parametric
modeling of the wave signals, which allows for the quantifi-
cation of estimation uncertainties even from a single data set.
Experimental data is collected within an active-sensing, local
”hot-spot” monitoring framework over a notched-Aluminum
plate (benchmark test), as well as a stiffened Aluminum panel
(simulating a sub-scale fuselage component) under different
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damage scenarios. Non-parametric spectral models incorpo-
rating theoretical and experimental estimation uncertainties
are used for damage detection and quantification. Results
are compared with those of state-of-the-art damage indicators
and the differences are discussed within the context of proba-
bilistic SHM. In addition, insights into statistical damage lo-
calization, based on the same approach, are also presented,
which may be used as a preliminary step to probabilistic dam-
age localization algorithms, decreasing the computational cost
while increasing the accuracy of imaging techniques under
uncertainty. To the authors’ best of knowledge, the use of
non-parametric models for active-sensing guided-wave prob-
abilistic SHM has not been previously proposed. The major
contributions of this study with respect to previous efforts in
the literature can be summarized as follows:

• The formulation of a probabilistic damage detection and
quantification framework based on non-parametric mod-
els of guided-wave active-sensing SHM data, which have
the advantage of simplicity and computational efficiency.

• The extraction of statistical confidence intervals directly
from the data, even when only a single finite data set
is available, without the need for time-consuming and
costly ground-based NDE testing nor the requirement for
the availability of many data sets.

• The application of the proposed models to damage de-
tection and quantification, with insights into its benefits
for damage localization, all within a probabilistic frame-
work.

NON-PARAMETRIC TIME SERIES
MODELS

Non-parametric modeling of dynamic systems is based on
the use of the time-domain Auto-/Cross-Covariance Functions
(A/CCF), or their frequency-domain counterparts, the Auto-
/Cross-Spectral Densities (Ref. 28). In the later case, several
metrics can be used to estimate the Power Spectral Density
(PSD) of a signal, including the periodogram, the Blackman-
Tukey, the Welch, and the Thompson estimators (Refs. 29,30).
Because the signals used in the estimation are finite in na-
ture, each of these metrics results in an estimated PSD, in
contrast to the true PSD of the system. As such, each one
has its own estimation confidence intervals, which are used
to define the estimation uncertainty in calculating the PSD.
In this context, one of the widely-used PSD estimators is
the modified periodogram estimator using Welch overlapping
windows (Ref. 31), also known as the Welch PSD estima-
tor (Ref. 30). The Welch PSD estimator, with respect to fre-
quency ω , of a time series signal (x[t]) is based on the av-
eraging of multiple windowed periodograms using properly
selected windows (w[τ]) with 50% overlap, and is calculated
as follows (Refs. 31, 32):

Ŝxx(ω) =
1

KLUT

K−1

∑
i=0
|T

L−1

∑
n=0

w[n]x̂[n+ iD]exp(− j2πωnT )|2

(1)

with

U =
1
L

L−1

∑
n=0

w2[n], x̂[t] = x[t]− µ̂x, N = L+D(K−1) (2)

and N, K, L, D, and T being the total number of signal time
points, the number of utilized windows, the size of each win-
dow, the number of overlapping data points in each window,
and the time period of the signal, respectively, and µ̂x the
mean of the signal (the hat indicates an estimated variable).
The mean and variance of the Welch PSD estimator are de-
scribed as follows:

E[Ŝxx(ω)] =
1

2πLU
Sxx(ω)|W (ω)|2 (3)

Var[Ŝxx(ω)] =
9
16

L
N

S2
xx(ω) (4)

where W (ω) is the Fourier transform of the window function.
It can be shown that the Welch PSD estimator is asymptoti-
cally unbiased and consistent (Ref. 30). A different, but simi-
lar, algorithm to compute the PSD involves the use of a sliding
window with overlap exceeding 50%, which gives PSD results
that are both frequency- and time-dependant. This algorithm
is the Short-Time Fourier Transform (STFT), and, written in
a form similar to the Welch estimation, it can be applied as
follows:

Ŝxx(ω,τ)=
1

KLUT

K−1

∑
i=0
|T

L−1

∑
n=0

w[n−τ]x̂[n+iD]exp(− j2πωnT )|2

(5)

STATISTICAL DAMAGE DETECTION AND
QUANTIFICATION

Analysis of guided-wave sensor signals using non-parametric
time series methods, such as the Welch PSD estimator, whilst
incorporating statistical tools, has been reported previously
for vibration-based SHM systems by Kopsaftopoulos and co-
workers (Refs. 33–35). Figure 1 presents the main ideas be-
hind a probabilistic SHM framework that employs Statistical
Hypothesis Test (SHT) for inference using time series models.
As shown, during a baseline phase, using a time series model
(parametric or non-parametric), one can estimate a charac-
teristic quantity Q̂ for the healthy (Q̂0), as well as different
predefined damage cases (Q̂A, Q̂B, . . .). After that, during the
inspection phase, the same characteristic quantity would be
extracted from the current/unknown signals (Q̂u), and a statis-
tical hypothesis test is applied to check –in a statistical sense–
for deviation of Q̂u from Q̂0 (damage detection) and its sta-
tistical similarity to one of the predefined damage quantities:
Q̂A, Q̂B, . . . (damage classification). Note here that the differ-
ent damage cases can be different sizes or types of damage;
they can also be different locations and magnitudes of dam-
age thus extending the application of this method to damage
localization and quantification.
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Fig. 1. Workframe for statistical time series methods for structural health monitoring (Ref. 33).

PSD-based Method

Based on the non-parametric PSD-based method and the cor-
responding SHT schemes (Ref. 33), damage detection is tack-
led via identifying changes in the PSD of the measured wave
propagation signals or properly determined wave packets. The
methods characteristic quantity thus is Q = Syy(ω) = S(ω),
with ω designating frequency. The main idea is based on the
comparison of the current structures response PSD, Su(ω),
to that of the healthy structures, Su(ω). In the case of ac-
tive sensing SHM, appropriate wave packets corresponding to
the modes of wave propagation can be used as the signals for
the estimation of the PSD. In this method, the statistical PSD
model’s characteristics are based on the theoretical analysis of
the Welch based PSD estimator (Ref. 29). Damage detection
then is based on the following statistical hypothesis testing
problem (Ref. 33):

Ho : Su(ω) = So(ω) (null hypothesis: healthy)
H1 : Su(ω) 6= So(ω) (alternative hypothesis: damaged)

(6)
However, because the true values of the PSD are not known,
corresponding estimated quantities are used instead (Q̂). It
can be shown that the Welch PSD estimator will have the fol-
lowing property (Ref. 29):

2KŜ(ω)/S(ω)∼ χ
2(2K) (7)

Thus, it can be shown that the following relation will follow
the F distribution with (2K,2K) degrees of freedom:

F =
Ŝo(ω)/So(ω)

Ŝu(ω)/Su(ω)
∼ F (2K,2K) (8)

such that Su(ω) and So(ω) are the true PSDs of the current
and healthy signals, respectively, and they are both statisti-

cally equal under the null hypothesis. Then, selecting the ap-
propriate confidence intervals (1-α), where α is Type I error
(false alarm), one may utilize the following decision-making
process:

if f α
2
(2K,2K)≤ F = Ŝo(ω)

Ŝu(ω)
≤ f1− α

2
(2K,2K) (∀ ω) :

Ho is accepted (healthy structure)
Else

H1 is accepted (damaged structure)

(9)

with f α
2

, f1− α
2

designating the F distributions α

2 and 1− α

2 ,
respectively, critical points ( fα is defined such that Prob(F ≤
fα) = α).

Modified PSD-based Method

In certain cases, more than a single data set is available
for a given state of the component being monitored under
namely constant operating/environmental conditions (which
is the case for closely spaced sampling events). This would
then allow for the incorporation of experimental statistics into
the estimation of the PSD, such as the sample mean:

E[Ŝo(ω)] =
1
M

M

∑
h=1

Ŝo(ω) (10)

with M designating the number of healthy data sets used in the
Welch-based estimation of the PSD. And since the expectation
of a number of healthy data sets would just surmount to the
true PSD for a large M, then the following property of the
sample mean estimator can be inferred:

2KME[Ŝo(ω)]/S(ω)∼ χ
2(2KM) (11)
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In such a case, one can define a mean-enhanced F statistic
by replacing the Welch PSD estimate with the mean of the
estimates of M number of data sets taken for the healthy state:

Fm =
E[Ŝo(ω)]/So(ω)

Ŝu(ω)/Su( f )
∼ F (2KM,2K) (12)

Similarly, under the null hypothesis, So(ω) and Su(ω) would
be statistically equal, and selecting the appropriate confidence
level, the decision making scheme can be setup as follows:

i f f α
2
(2KM,2K)≤ Fm = E[Ŝo(ω)]

Ŝu(ω)
≤ f1− α

2
(2KM,2K) (∀ f ) :

Ho is accepted (healthy structure)
Else

H1 is accepted (damaged structure)
(13)

with f α
2

, f1− α
2

designating the F distributions α

2 and 1− α

2 ,
respectively, critical points ( fα is defined such that Prob(F ≤
fα) = α).

EXPERIMENTAL SETUP
The Components

In this study, the models and corresponding damage detec-
tion methods presented above were applied to two compo-
nents with different damage cases. The first one (notched Al
plate) was utilized as a benchmark test to validate the pro-
posed models. The second component (sub-scale Al fuselage
part) was used as a more realistic case to test the applicability
of the models on more complex structures.

Al Plate 6061 Aluminum 152.4 × 254 mm (6 × 10 in)
coupons (2.36 mm/0.093 in thick) (McMaster Carr) with a
middle hole having a diameter of 0.5 in were used for the
notched-Al benchmark experiments to test the analysis tech-
nique. 6 single-lead zirconate titanate (PZT) SMART Lay-
ers (type PZT-5A) designed and fabricated by Acellent Tech-
nologies, Inc the Al plate as shown in Figure 2a using Hysol
EA 9394 adhesive. The employed PZT actuators/sensors are
3.175 mm (1/8 in) in diameter and 0.2 mm in thickness. A
2 mm notch was cut extending from the hole of the Al plate
with an end mill. Then, the notch was elongated with 2-mm
increments up to 20 mm using a 0.81 mm (0.032 in) handsaw.

Sub-scale Al Fuselage Component A 609.6× 609.6 mm
(24× 24 in) Al panel (0.81 mm/0.032 in thick), fitted with
three 25.4× 25.4 mm (1× 1 in) stringers was used as a
sub-scale fuselage component. Two 8-sensor SMART lay-
ers (Acellent Technologies, Inc) were installed using Hysol
EA 9394 adhesive on either side of one of the stringers on
the fuselage component as shown in Figure 2b. To simulate
damage, 5 damage levels (DLs) were used. Firstly, the bottom
side of rivet A holding down the stringer between the sensor
layers was partially cut out using a hand saw (DL I), then the
bottom was completely filed (DL II). After that, rivet A was
partially popped out using a hammer (DL III), then completely
removed (DL IV). Finally, rivet B was also partially popped
out (DL V).

Fig. 2. The two experimental coupons used in this study:
(a) notched Al plate and (b) sub-scale fuselage component.

The Test Setup

Actuation signals in the form of 5-peak tone bursts having an
amplitude of 90 V peak to peak and various center frequen-
cies were generated in a pitch-catch configuration and 20 data
sets per structural case were collected at a sampling rate of 24
MHz using a ScanGenie III data acquisition system (Acellent
Technologies, Inc). Data sets were then exported to MATLAB
for analysis.1

RESULTS AND DISCUSSION

Benchmark Test: Notched Al Plate

The proposed non-parametric methods were first applied to
the notched Al plate data sets for damage detection and quan-
tification using guided-wave active sensing SHM. Examining
one of the actuator-sensor paths being directly affected by the
notch (see Figure 2a for sensor numbering), Figure 3 panels a
and b show samples of the full signal and the S0 mode only,
respectively, for the signal received at sensor 5 when sensor
3 was actuated with 250 kHz center frequency (path 3-5) for
different notch sizes. Generally, it can be observed that a de-
crease in amplitude, as well as a very slight shift in frequency
is observed as the notch increases in length. Figure 4 shows
the evolution of the corresponding damage indices (DIs) as
calculated using the Root Mean Square Deviation (RMSD)
and two state-of-the-art DI’s from the literature, as proposed
in (Ref. 36) and (Ref. 17). All 20 datasets for each notch
size were used for the DI calculations. It can be seen that the
DIs follow the increase in notch size (damage quantification),
giving a single value for every damage case. The purpose of
this approach is to detect the existence of a crack and quan-
tify its size. However, the reliability quantification, i.e. the
extent to which a specific deterministic DI-based approach
accurately determines the characteristic size of damage can
only be quantified by examining the DI-based results for ev-
ery damage case against those of NDE techniques that can
determine damage size within a POD-based framework. As
shown, even for a controlled lab environment, the values of
the DIs for the same case change with different measurements,

1Matlab version R2018a, functions pwelch.m (window size: 80-130; nfft:
5000; noverlap: 50%) and spectrogram.m (window size: 400-900; nfft: 960;
noverlap: 95%).
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Fig. 3. Notched Al plate: Indicative signals from the 3-
5 path at 250 kHz (actuation center frequency) and for
different notch sizes showing (a) the full signal, and (b)
the S0 mode.

making the decision of damage/no damage quite challenging.
Furthermore, no uncertainty estimation and quantification is
addressed to allow for the finite nature of the sampled data or
the environmental/operating conditions.

Figure 5a and 5b show the Welch PSD estimation for the
same 3-5 data set along with 95% statistical confidence in-
tervals (Ref. 29). As shown, both plots show, as expected, the
characteristic peak at the frequency of actuation (250 kHz).
In addition, a theoretical estimation uncertainty can be clearly
defined, such that any signal falling between the confidence
intervals will be deemed healthy with 95% confidence, i.e.
with an 0.05 α level (type I error or false alarm probability).
This estimation of the confidence intervals is made possible
due to the stochastic nature of the Welch-based PSD estimate
used in this study. As such, some notch sizes might go un-
detected, as is the case with the 2 mm and the 4 mm notch
damages.

Following the formulation of the F and Fm statistics presented
in the previous section, damage detection was addressed via
the postulated statistical hypothesis testing procedures. Fig-

Fig. 4. Notched Al plate: Indicative results for three Dam-
age Indices for the 3-5 signal path and different notch sizes
for (a) the full signal and (b) the S0 mode only.

ures 6a and 6b present the results of the F and Fm statis-
tics, respectively, for the 3-5 path for different notch sizes
(note that only the first arrival wave packet, i.e. the S0 mode,
was used in these figures). In these Figures a damage is de-
tected when the test statistic exceeds the dashed horizontal
lines. The first thing to observe is that the proposed statis-
tics are capable of detecting notch damages beyond 6 mm in
length with 95% confidence. The second observation is that
not all frequencies are sensitive to damage. In addition, the
most damage-affected frequencies do not coincide with the
actuation frequency used in this analysis (250 kHz), which
hints on the complex dynamics involved. Nonetheless, this
approach shows promise in differentiating between healthy
and damaged cases within a probabilistic framework and pre-
determined confidence levels.

Looking further into both panels of Figure 6, it can be ob-
served that the Fm statistic has narrower confidence intervals
for the same type I error probability α = 0.05, as evident
from the detection of the 6-mm notch damage. This is ex-
pected given the more accurate the sample mean of Welch-
based PSD estimates is for an estimate of the system’s spectral
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Fig. 5. Notched Al plate: Indicative Welch-based PSD es-
timates for the 3-5 signal path (250 kHz center frequency)
for different notch sizes for (a) the full signal, and (b) the
S0 mode.

density, compared to the Welch-based PSD estimate based on
a the theoretical analysis, i.e. E[Ŝo(ω)] compared to Ŝo(ω)).
The use of the sample mean of the PSD estimates under sev-
eral realizations can potentially account for varying operat-
ing/environmental conditions, when a signals representative
of the admissible conditions are available.

This advantage that the Fm statistic has over the F statistic can
also be seen when analyzing actuator-sensor paths that do not
intersect damage, i.e. the signals would not be extensively af-
fected by damage. Figure 7 panels a and b show the S0 mode
signals and the corresponding DIs, respectively, for path 5-1.
As can be observed, the values of the DIs are a fraction of
what was observed from Figure 4b. Furthermore, the DI pro-
files for all three DI formulations do not follow the increase in
notch size. This behavior has been observed in previous stud-
ies (Ref. 17) and is due to the fact that after a specific damage
size, further increasing it does not affect the wave propagation
of specific paths that may or may not interest damage.

Figure 8 panels a-c present the Welch-based PSD, F and Fm
statistics of the same path, respectively. As shown, using the

Fig. 6. Notched Al plate: Indicative damage detection re-
sults for S0 mode of path 3-5 under 250 kHz actuation
via the (a) F and (b) Fm statistics. The dashed horizon-
tal lines indicate the damage thresholds at the 95% confi-
dence level.

F statistic, a decision of accepting the null hypothesis (healthy
structure) for all cases was reached (because the statistic falls
within the “healthy” confidence intervals for all cases and fre-
quencies). Therefore, the F statistic is not able to detect these
damages at the 95% confidence level. From the Fm plot, both
the 10 and 14 mm cases were correctly determined as dam-
aged. The fact that the 18-mm notch goes undetected, whilst
smaller notches are detected (also apparent in Figure 7b from
the decline of the values of all DIs for notch sizes more than
10 mm), is related to the fact that this path does not cross
the damage, making the effect of damage on this wave prop-
agation path more complex to be clearly detected and quan-
tified. Nonetheless, these observations show the benefit that
the Fm statistic might have under the conditions mentioned
above. Finally, carrying out both hypothesis tests for all avail-
able data sets for each case, false alarm and missed fault per-
centages were extracted. None of the healthy case data sets
were deemed damaged (false alarm rate equal to zero), which
is expected given the controlled lab environment in which the
tests were carried out. Table 1 shows the summarized missed
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Fig. 7. Notched Al plate: (a) The S0 signal and (b) the cor-
responding DIs for path 5-1 under 250 kHZ actuation.

faults percentages for select actuator-sensor paths.

As mentioned, the STFT algorithm has the advantage over the
Welch PSD estimation in retaining time points in the evalua-
tion of the PSD; that is, the evolution of the PSD across the
chosen windows can be captured using the STFT PSD. Figure
9a presents the STFT estimation for the first wave packet (S0)
in the path 3-5 (damage intersecting) under different notch
sizes, while Figure 9b depicts the corresponding results for
path 5-1 (non-intersecting damage). It can be observed that,
for the damage intersecting path (3-5), there is a decrease in
the PSD magnitude as notch size increases for all frequencies,
which is similar to the observed trend from the Welch PSD es-
timations (see Figure 5b). This is due to scattering effects that
occur at/around the damage, where less energy would reach
the sensor in the presence of the notch. It can be also readily
concluded from the separation between the healthy and dam-
aged boxes that this wave propagation path exhibits a clear
distinction between the healthy and the damaged states.

Examining paths that do not intersect damage (Figure 9b), the
opposite trend in the development of the STFT PSD magni-
tude versus notch size can be observed up till a notch length
of 10 mm, after which the PSD median value starts to drop.

Fig. 8. Notched Al plate: Indicative damage detection re-
sults for S0 mode of path 5-1 (non-intersecting with dam-
age) under 250 kHz actuation via the (a) F and (b) Fm
statistics. The dashed horizontal lines indicate the dam-
age thresholds at the 95% confidence level.

These observations can be explained in terms of the sig-
nals scattered off the damage from adjacent notch-intersecting
paths. Indeed, as the damage-intersecting signal’s energy is
scattered, it is transferred to neighboring sensors, thus in-
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Table 1. Missed fault percentages for notched Al plate under different damage cases and different actuator-sensor paths.
2 mm 4 mm 6 mm 8 mm 10 mm 12 mm 14 mm 16 mm 18 mm

Path F Fm F Fm F Fm F Fm F Fm F Fm F Fm F Fm F Fm
1-4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1-5 100 100 100 100 100 100 0 0 100 0 0 0 100 5 100 100 100 100
1-6 100 100 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0
2-4 100 100 100 100 100 100 100 100 100 0 100 0 100 25 100 100 100 100
2-5 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0
2-6 100 100 100 100 100 0 5 0 0 0 0 0 0 0 0 0 0 0
3-4 100 100 100 100 100 100 100 100 100 100 0 0 0 0 0 0 0 0
3-5 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0
3-6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

creasing the energy of the signals received at those sensors.
In this context, as notch size increases, the amount of scat-
tered energy increases, and thus the amount of energy added
to the non-intersecting paths increases. However, also as the
notch size increases, the angle of scattering changes, and at a
large-enough notch length, the notch may become similar to a
boundary, preventing scattered waves from reflecting to differ-
ent parts of the plate. This might be the reason why the PSD
drops after 10 mm. Nonetheless, the median PSD value for
these extreme cases still stays larger than that for the healthy
case. From this discussion, it becomes clear that the trends
in the PSD with notch size can be used to indicate whether a
given sensing path intersects damage or not.

Figure 9c shows the change in the STFT PSD magnitude with
increasing notch size for the 2-6, 3-6, and 2-4 wave propaga-
tion paths. As shown, the general trend in sensing path 2-6 is
the decrease in PSD with notch size compared to the healthy
state, while an opposite trend can be observed with path 2-4
(even for notch sizes more than 10 mm) due to the aforemen-
tioned exchange of energy between signals. Also, path 3-6,
being close to, yet not intersecting the notch, first exhibits
a trend similar to the non-intersecting paths. After that, as
the notch size increases and further intrudes the sensing path,
a transformation in the PSD trend can be observed to more
mimic that of a notch-intersecting path. Note that, although
the same trend was observed for the paths relatively far from
damage (paths 5-1 and 2-4), the distinct difference with path
3-6 is that the STFT PSD median actually decreases beyond
the value of that of the healthy case for the 18 mm case.

From this indicative analysis, one can corner down the loca-
tion of damage to within specific sensing paths, according to
whether a given actuator-sensor path intersects or does not in-
tersect damage. Furthermore, information from sensing paths
that are close to damage (such as path 3-6 in this study) can be
used to asses the damage evolution direction. All of this in-
formation can then be fed into damage localization algorithms
reducing the amount of data that has to be analyzed, as well as
producing more precise results. These are the topics of current
research and will be presented via a comprehensive analysis
in a future study.

Sub-scale Test: Stiffened Al Panel

In order to test the proposed non-parametric models in a more
realistic situation, data collected over a stiffened Al panel,
simulating part of a rotorcraft fuselage, was used to validate
the methods presented herein. Figures 10a and 10b, respec-
tively, present the full signal received at sensor 14 when sen-
sor 5 was actuated (see Figure 2), as well as the second-arrival
wave packet, for the different damage levels (DLs) in this
study. Figure 10c shows the calculated DIs. As can be ob-
served, although the DIs follow the evolution of the different
DLs, giving a higher value with increasing damage level, the
values of the DIs exhibit somewhat significant variations tak-
ing into account that the experiments took place in a labora-
tory environment. This pinpoints the need for a probabilistic
active-sensing SHM framework that accounts for varying op-
erating and environmental conditions. Furthermore, as shown
in Figure 10c for DLs 3 and 4, damage quantification may not
be straight forward using the DIs.

Figure 11a shows the Welch-based PSDs for path 5-14 using
all 20 realizations per DL, where the dashed red lines show the
theoretical 90% confidence intervals, while the dashed black
lines show the experimental 90% confidence intervals. As can
be seen, because 5-14 is a damage intersecting path, the PSD
follows the evolution of the damage levels. The observed in-
crease in signal PSD with DL can be explained in terms of the
type of damage being inflicted on the component. Here, the
different damage levels were designed to make the Al panel
less stiffer at the point of damage, and thus it is expected that
more energy can pass through that point as damage evolves. A
second observation from Figure11a is that all DLs fall within
the theoretical Welch-based confidence intervals (Ref. 29) of
the healthy case, while almost all of them are deemed dam-
aged when considering the experimental uncertainty. The lat-
ter observation is again expected due to the controlled lab en-
vironment, while the former observation has to do with the
damages not having a large effect on the total energy reaching
the sensors for the wave packet chosen in this study. The same
trend can be observed with the F statistic (Figure 11b), which
uses the theoretical estimation confidence intervals in the sta-
tistical decision-making process. That being said, the types
of damage used in this study would have a much more pro-
nounced effect had the stiffened panel been under load, which

9



Fig. 9. Notched Al plate: The evolution of STFT-
based spectral estimation under different notch sizes for
actuator-sensor pair (a) 3-5 and (b) 5-1; (c) STFT estima-
tion at 250 kHz for three paths under different damage
cases. Boxplots indicate 95% confidence intervals.

is something that will be investigated in future work due to its
relevance to the community.

Finally, Figure 11c indicates that the Fm statistic can detect
the missing rivet, as well as all realizations of the last dam-

Fig. 10. Stiffened Al Panel: Indicative results from 5-14
signal path at 150 kHz actuation frequency for different
damage levels (DLs); (a) the full signal, (b) the second ar-
rival wave packet, and (c) the DI evolution using 20 real-
izations of the second-arrival wave packet for each DL.

age level (missing rivet and partially-popped rivet). This ad-
vantage that the Fm statistic has in detecting damage over the
F statistic stems from the fact that the Fm statistic considers
both: theoretical statistical confidence intervals, as well as ex-
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perimental uncertainties, as incorporated in its formulation us-
ing the sample mean of the Welch-based PSD estimators ob-
tained from multiple data sets. This combination has a syner-
gistic effect in narrowing the theoretical confidence intervals
using the “tighter” experimental ones. Note that, in the case
of random vibration signals, the Welch-based PSD estimation
yields theoretical confidence intervals that are much narrower
than the corresponding experimental ones,which face chal-
lenges in capturing even minimal operational/environmental
variability (Refs. 33, 35). In the case of active-sensing wave
propagation, the nature of these signals is deterministic, thus
the estimation of the Welch-based PSD statistics results in
wider confidence intervals.

Following the same approach in the previous section, STFT
spectral estimations were obtained for the Al stiffened panel
using paths that both do and do not intersect damage, as re-
spectively shown in Figures 12a and 12b. Again, the trend
that can be observed for the damage-intersecting path is an in-
crease in the PSD with damage level following the discussion
above. As for the damage non-intersecting path (path 5-11 in
Figure 12b), only a slight increase in PSD can be observed,
which is attributed to the decreased attachment of the stringer
to the panel in the event of damaged rivets, thus, again, al-
lowing for more energy to pass through to the sensor on the
other side. This increase, however, is significantly lower than
that for the damage-intersecting path. This is clearly shown
in Figure 12c where it can be observed that the rate of change
of energy for the damage non-intersecting paths (in this case
path 5-11 and path 5-15) is almost zero compared to that for
path 5-14. These observations can again be used in cornering
the location of damage.

CONCLUSIONS

In this study, a probabilistic framework for active-sensing
guided-wave-based SHM was proposed using non-parametric
time series models. Two damage detection methods based on
corresponding statistical hypothesis tests were formulated us-
ing Welch-based PSD estimators: the first based on a sin-
gle data set and the theoretical statistical properties of the
Welch-based PSD, and the second based on a modified for-
mulation that leverages the availability of multiple data sets
per structural case for improved robustness under varying op-
erating/environmental conditions. Furthermore, insights into
probabilistic damage localization were extracted using the
STFT spectral estimation. The proposed framework was ap-
plied to an Al notched plate with different notch sizes, as well
as to a stiffened Al panel resembling a sub-scale rotorcraft
fuselage component with different damage levels, including
damaged and missing rivets. Using the developed statistical
decision making schemes for the Al plate, notch sizes of at
least 6 mm and 4 mm were correctly determined damaged
using the first and second methods, respectively. Also, the ad-
vantage of the modified test that accounts for the availability
of multiple data sets was apparent in the stiffened Al panel
case, where the last two damage levels were detected using all
available data sets, whereas the first method failed to detect

Fig. 11. Stiffened Al Panel: Indicative results for (a) the
Welch PSD estimations for 20 realizations of the second-
arrival wave packet of the path 5-14 for a 150 kHz actua-
tion (the dashed red lines represent 90% estimation confi-
dence intervals, while the black ones represent 90% exper-
imental confidence intervals), and (b) F and (c) Fm statis-
tics for the same data sets using 90% confidence levels.

damage. Using the proposed probabilistic framework, corre-
sponding confidence intervals can be extracted for each case,
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Fig. 12. STFT-based spectral estimation under different
damage cases in the fuselage component for actuator-
sensor pair (a) 5-14 and (b) 3-11. Panel (c) shows the evo-
lution of the STFT with DL at 150 kHz for three actuator-
sensor pairs.

adding a significant advantage in decision-making, as specific
type I error probabilities can be explicitly defined, compared
to the deterministic metrics being used today. In addition, for
both components, a novel method using STFT estimation for

cornering damage location to within specific actuator-sensor
paths was presented based on the effect of damage on scat-
tering wave energy. This method can be used for filtering
unimportant information before feeding data into localization
algorithms, making them more computationally-efficient and
more accurate. In addition, this method can be used to identify
potential “hotspot” locations on structural large-scale compo-
nents.
Author contact: Ahmad Amer, amera2@rpi.edu; Fotis Kop-
saftopoulos, kopsaf@rpi.edu
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