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ABSTRACT
This work introduces the use of statistical time series methods to detect rotor failures in multicopters. A concise
overview of the development of various time series models using scalar or vector signals, statistics, and fault detection
methods is provided. The fault detection methods employed in this study are based on parametric time series repre-
sentations and response-only signals of the aircraft state, as the external excitation is non-observable. The compara-
tive assessment of the effectiveness of scalar and vector statistical models and several residual-based fault detection
methods are presented in the presence of external disturbances, such as various levels of turbulence and uncertainty,
and for different rotor failure scenarios. The results of this study demonstrate the effectiveness of all the proposed
residual-based time series methods in terms of prompt rotor fault detection, although the methods based on Vector
AutoRegressive (VAR) models exhibit improved performance compared to their scalar counterparts with respect to
their robustness and effectiveness for different turbulence levels and ability to distinguish between healthy and fault
compensated condition after rotor failure.

NOTATION

α : Type I risk level
β : Type II risk level
γ : Autocorrelation
τ : Lag
σ2 : Residual variance
Σ : Residual covariance matrix
ARMA : AutoRegressive Moving Average
E{·} : Expected value
PE : Prediction Error
ARX : AutoRegressive with eXogenous excitation
PSD : Power Spectral Density
BIC : Bayesian Information Criterion
RSS : Residual Sum of Squares
FRF : Frequency Response Function
ACF : Auto-Covariance Function
iid : identically independently distributed
SPP : Samples Per Parameter
LS : Least Squares
SPRT : Sequential Probability Ratio Test
SSS : Signal Sum of Squares
AR : Scalar AutoRegressive model
VAR : Vector AutoRegressive model
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INTRODUCTION
Multicopters, being capable of hovering and vertical take-off
and landing, have attracted the interest of the community with
respect to both commercial and defense applications over the
last decade. Given the increasing interest and widespread use
of these vehicles in a number of important arenas, early fault
detection and identification of such systems are critical in or-
der to ensure and improve their overall safety and reliability.
Rotorcraft are complex systems that exhibit strong dynamic
coupling between rotors, fuselage, and control inputs, as well
as time-varying and cyclo-stationary behavior. As a result,
they face certain system modeling and fault detection and
identification challenges that are not present in fixed-wing air-
craft. These issues, as well as potential solutions, have been
explored in the recent literature.
An algorithm for online detection of motor failure using
only inertial measurements and control allocation by an ex-
act redistributed pseudo-inverse method for octacopters has
been demonstrated by Frangenberg et al. (Ref. 1). Heredia
and Ollero (Ref. 2) have addressed sensor fault identifica-
tion in small autonomous helicopters using Observer/Kalman
Filter identification. Fault tolerant control for multi-rotors
(Refs. 3, 4), as well as various fault diagnosis methods such
as analytical models, signal processing, and knowledge-based
approaches for helicopters have also been proposed (Ref. 5).
Statistical time series methods have been used to detect var-
ious fault types in aircraft control systems due to their sim-
plicity, efficient handling of uncertainties, no requirement of
physics based models, and applicability to different operat-
ing conditions (Refs. 6–9). Dimogianopoulos et al. (Ref. 10)
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Fig. 1. Schematic representation of a regular hexacopter
have demonstrated the effectiveness of two statistical schemes
based on Pooled Non-Linear AutoRegressive Moving Aver-
age with eXogenous excitation (P-NARMAX) to detect and
isolate faults for aircraft systems under different flight condi-
tions, turbulence levels, and fault types and magnitudes. The
first method models the pilot input and aircraft pitch rate re-
lationship, while the second approach models the relationship
between horizontal and vertical acceleration, angle of attack
and pitch rate signals in fixed-wing aircraft.

The objective of the present study is the development of a ro-
bust framework for fault detection in multicopters using sta-
tistical time series methods to achieve early detection of rotor
failures in the presence of external disturbances, such as tur-
bulence, and uncertainty. This information will be extremely
useful for control allocation redistribution and reconfiguration
of the vehicle to accomplish safe flight.

HEXACOPTER MODEL AND DATA
GENERATION

Physics-Based Modeling of Multicopter System

A flight simulation model has been developed for a regular
hexacopter (Fig. 1) using summation of forces and moments
to calculate aircraft accelerations. This model is used as the
main source of simulated data under varying operating and en-
vironmental conditions, as well as different fault types. Rotor
loads are calculated using Blade Element Theory coupled with
a 3×4 Peters-He finite state dynamic wake model (Ref. 11).
This model allows for the simulation of abrupt rotor failure
by ignoring the failed rotor inflow states and setting the out-
put rotor forces and moments to zero.

A feedback controller is implemented on the nonlinear model
to stabilize the aircraft altitude and attitudes, as well as track
desired trajectories written in terms of the aircraft veloci-
ties. This controller is designed at multiple trim points, with
gain scheduling between these points to improve performance
throughout the flight envelope.

The state vector consists of the 12 rigid body states and is
defined in Eq. 1.

x =
{

X Y Z φ θ ψ u v w p q r
}T (1)

The input vector is comprised of the first four independent
multirotor controls for collective, roll, pitch and yaw and is

Fig. 2. Controller Block Diagram

defined in Eq. 2:

u =
{

Ω0 ΩR ΩP ΩY
}T (2)

The control architecture is illustrated in Fig. 2 and detailed in
Ref. 3. This control design has been demonstrated to perform
well even in the event of rotor failure, with no adaptation in
the control laws themselves.

Data Generation for Model Identification

A continuous Dryden wind turbulence model (Ref. 12) has
been implemented in the flight simulation model. The Dryden
model is dependent on altitude, length scale, and turbulence
intensity and outputs the linear and angular velocity compo-
nents of continuous turbulence as spatially varying stochastic
signals. The proper combination of these parameters deter-
mines the fit of the signals to observed turbulence.

In this system, altitude is taken as 5m and the length scale as
the hub-to-hub distance of the hexacopter, which is equal to
0.6096 m (2 ft). The data sets for aircraft states are generated
through a series of simulations for different turbulence levels
(light, moderate and severe) both for healthy aircraft and dif-
ferent fault types, such as failure of front and side rotors. For
a summary of the generated data sets seen Table 1. The time
series (signals) of the hexacopter attitudes (aircraft states) for
the healthy state, as well as for different fault types, i.e. com-
plete failure of front rotor or side rotor, provide useful insight
into the dynamics of the system. The rotor failures addressed
in this work are: front rotor (rotor 1), right-side rotor (rotor
2), and left-side rotor (rotor 6).

Workframe of Statistical Time Series for Fault Detection

Let Zo designate the aircraft under consideration in its healthy
state, and ZA,ZB, . . . the aircraft under fault of type A,B, . . .

Table 1. Simulation Data
Aircraft state number of datasets for turbulence levels

Light Moderate Severe
Healthy 20 20 20
Rotor failure (1) 20 20 20
Rotor failure (2) 20 20 20
Rotor failure (6) 20 20 20
Sampling frequency: fs = 1000 Hz
Signal length in samples: 60000 (60 s)
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and so on. Zu designates the unknown (to be determined) state
of the aircraft. Statistical time series modeling is based on
discretized response signals y[t]1 (for t = 1,2, . . . ,N) which
are the aircraft states. N denotes the number of samples
and the conversion from discrete normalized time to analog
time is based on (t − 1)Ts, with Ts being the sampling pe-
riod. The response signals are represented by Z and subscript
(o,A,B, . . . ,u) is used to denote the corresponding state of the
aircraft that produced the signals. The sampling frequency
(Fs) for the signals is chosen such that the frequency range of
interest is 0−500 Hz.

The signals generated from simulation are analyzed by para-
metric or non-parametric statistical time series methods and
proper models are fitted and validated. Such models are
identified for the cases Zo,ZA,ZB, .. in the baseline phase.
Fault detection is based on binary statistical hypothesis test-
ing (Ref. 13) that compares the residual properties generated
from Zu in each inspection phase with that available from
baseline models. The design of a binary statistical hypothe-
sis test is generally based on the probabilities of type I (false
alarm) and type II (missed faults) error probabilities, repre-
sented by α and β respectively.

The general workframe for fault detection and identification
via statistical time series modeling is illustrated in Fig. 3. Note
that in the current study only the task of fault detection is
addressed. The task of fault identification (classification) is
the topic of current research and will be presented in a future
study.

BASELINE MODELING OF THE HEALTHY
AIRCRAFT

The aircraft signals for roll, pitch and yaw attitudes gener-
ated via a series of simulations of forward flight of the hexa-
copter under turbulence (light, moderate and severe levels) for
healthy and different faulty states are used for model identifi-
cation and fault detection.

In the present scenario, the signals obtained are response only
signals with the excitation x[t] assumed to be a white (uncor-
related) signal induced by atmospheric turbulence. That is
γxx[τ] = 0 for τ 6= 0, where γxx denotes the AutoCorrelation
Function (ACF) and τ the ACF time lag, given as:

γxx[τ] = E{x[t] · x[t + τ]} (3)

Non-parametric Identification and Fault Detection

Short-Time Fourier Transform or Spectrogram

The Short-time Fourier Transform (STFT) of a discrete-time
signal is defined via a moving window as follows:

Y [n,ω] =
L−1

∑
m=0

y[n+m] ·w[m] · e−i2πkm/N (4)

1A functional argument in parentheses designates function of a real vari-
able; for instance x(t) is a function of analog time t ∈ R. A functional argu-
ment in brackets designates function of an integer variable; for instance x[t]
is a function of normalized discrete time (t = 1,2, . . .).

where n denotes the location in time, L denotes the length
of the window (w), and ω the frequency. The square of the
magnitude of the STFT yields the spectrogram:

S[n,ω] = |Y [n,ω]|2 (5)

Spectrogram gives the power intensity of the frequencies
present for a particular time window. With sliding windows
over time, it is possible to detect changes in the frequency
of the signal, which can provide a preliminary idea on the
dynamic content and transient effects due to the existence of
faults.

Parametric Identification via Time Series Models

Scalar AR Identification Method

A single signal obtained from a healthy flight simulation is
parametrized to form a scalar (univariate) AutoRegressive
time series model (Ref. 14):.

y[t]+
na

∑
i=1

ai · y[t− i] = e[t], e[t]∼ iid N(0,σe
2) (6)

with ai and na designating the AR parameters and model
orders respectively, iid stands for identically independently
distributed, and N(·, ·) denotes a univariate normal distribu-
tion with the indicated mean and variance, respectively. In
Eq. 6, e[t] coincides with the one-step-ahead-prediction error
and is also referred as the model residual sequence or innova-
tions (Refs. 14, 15).

The identification of parametric time series models is com-
prised of two main tasks: parameter estimation and model
order selection. The parameters for the AR model can been
estimated by minimization of the Least Squares (LS) criterion
(Refs. 15, 16), whereas the model order selection is achieved
based on the examination of the Bayesian Information Crite-
rion (BIC) (Refs. 15,16) (Eq. 7) and Residual sum of Squares
over Signal Sum of Squares Criterion (RSS/SSS) (Eq. 8). The
former is a statistical criterion that penalizes model complex-
ity (order, and hence the number of free parameters) as a coun-
teraction to a decreasing model fit criterion. The latter deter-
mines the predictive capability of the model.

BIC = lnσ
2
e +(d× lnN)/N (7)

RSS/SSS =
∑σ2

e

∑y[t]2
(8)

In Eq. 7, σ2
e is the variance of the residuals, d denotes the

number of parameters to be estimated for the model and N
denotes the number of samples used for estimation.

Vector AR Identification Method

Vector AutoRegressive (VAR) models employ s-dimensional
signals, i.e. the aircraft states in the present study, for multi-
variate (s-variate) time series modeling (Refs. 17,18). Though
they bear striking resemblance to their univariate or scalar
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Fig. 3. General workframe of statistical time series methods for fault detection and identification.

counterparts, they have a much richer structure and typically
require multivariate statistical decision making procedures.
The univariate response signal y[t] of Eq. 6 is replaced by an s-
variate vector2, hence the VAR(na) model is of the following
form:

y[t]+
na

∑
i=1

Ai ·y[t− i] = e[t], with

e[t]∼ iid N(0,Σ), Σ = E{e[t] · eT [t]}
(9)

with Ai (s× s) designating the i-th AR matrix, e[t] (s× 1)
the model residual sequence characterized by the non-singular
and generally non-diagonal covariance matrix Σ, n the AR
order, and E{·} statistical expectation. Given the attitude
signal measurements y[t] (t = 1,2, . . . ,N), the estimation of
the VAR parameter vector θ comprising all AR matrix ele-
ments (θ = vec([A1A2 . . .Ana]) and the residual covariance
matrixΣ is accomplished via linear regression schemes based
on minimization of the Ordinary Least Squares (OLS) or
the Weighted Least Squares (WLS) criterion (Refs. 15, 16).
The modeling procedure involves the successive fitting of
VAR(na) models for increasing AR order n, until an adequate
model is achieved. The model order is chosen by replacing
the variance of residuals for scalar case by the trace of the
residual covariance matrixΣ (Ref. 7).

RESIDUAL BASED FAULT DETECTION
Model residual based methods use functions of the residual
sequences (known as characteristic quantity) for fault detec-
tion, which are obtained by driving the current signal(s) (Zu)
through the model(s) estimated in the baseline phase for the
healthy aircraft, denoted by Mo. The key idea is that the resid-
ual sequence obtained by a healthy model that truly reflects
the healthy aircraft properties possesses certain distinct prop-
erties which are distinguishable from the faulty states of the
aircraft.

2Bold–face upper/lower case symbols designate matrix/column–vector
quantities, respectively. Matrix transposition is indicated by the superscript T .

The residual series obtained by driving the current signal(s)
through the aforementioned model is denoted as eou[t] and is
characterized by variance, σ2

ou. The residual series obtained
using healthy baseline data records are designated as eoo[t],
characterized by variance σ2

oo.

Residual Variance Method

In this method, the characteristic quantity used for fault detec-
tion is the residual variance (Ref. 6). Fault detection is based
on the fact that the residual series eou[t], obtained by driving
the current signals, Zu through the model, Mo (correspond-
ing to the healthy state) should be characterized by variance
σ2

ou = σ2
oo which becomes minimal if and only if the current

state of the aircraft is healthy (Zu = Zo). Fault detection is
based on the following hypothesis testing procedure:

H0 : σ
2
ou ≤ σ

2
oo (null hypothesis – healthy aircraft)

H1 : σ
2
ou > σ

2
oo (alternate hypothesis – rotor failure)

(10)

Under the null (Ho) hypothesis, the residuals eou[t] are (just
like the residuals eoo[t]), iid Gaussian with zero mean and
variance σ2

oo. Hence the quantities Nu · σ̂2
ou/σ2

oo and (No −
d) · σ̂2

oo/σ2
oo follow central χ2 distribution with Nu and No−d

degrees of freedom, respectively (as sums of squares of in-
dependent standardized Gaussian random variables)3. No and
Nu designate the number of samples used in estimating the
residual variance in the healthy and current cases, respectively
(typically No = Nu = N), and d designates the dimensionality
of the estimated model parameter vector. Nu and No should
be adjusted to Nu− 1 and No− 1, respectively, if each esti-
mated mean is subtracted from each residual sequence. Con-
sequently, the following statistic follows a Fischer distribu-
tion (denoted by F) with (Nu,No− d) degrees of freedom as

3A hat designates estimator/estimate of the indicated quantity; for in-
stance σ̂ is an estimator/estimate of σ.
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the ratio of two independent and normalized χ2 random vari-
ables (Ref. 6):

Under H0 : F =

Nu σ̂2
ou

Nu σ2
oo

(No−d) σ̂2
oo

(No−d) σ2
oo

=
σ̂2

ou

σ̂2
oo

(11)

The following hypothesis test is thus constructed at the α type
I (false alarm) risk level:

F ≤ f1−α(Nu,No−d) ⇒ H0 accepted (healthy aircraft)
Else ⇒ H1 accepted (rotor failure)

(12)
where, f1−α(Nu,No−d) designates the corresponding Fischer
distribution’s (1−α) critical point.

Residual Uncorrelatedness Method

This method is based on the fact that the residual series eou[t],
obtained by driving the current signals (Zu) through the model
(M0), is uncorrelated (white) if and only if the aircraft is cur-
rently in its healthy condition (Ref. 6). Fault detection is per-
formed by the following hypothesis testing:

H0 : ρ[τ] = 0 (null hypothesis – healthy aircraft)
H1 : ρ[τ] 6= 0 (alternate hypothesis – rotor failure)

(13)
where ρ[τ] is the normalized autocorrelation function
(ρxx[τ] = γxx[τ]/γxx[0]) of the residual sequence eou[t].

Therefore, the characteristic quantity for fault detection by
this method is

[
ρ[1] ρ[2] ρ[3] . . . ρ[τ]

]T . For this method,
r is the design variable for the statistical test, which denotes
the maximum lag in time (τ) for which the normalized ACFs
are being accounted for. Under the null hypothesis (H0), the
residuals eou[t] are iid Gaussian with zero mean and the test
statistic χ2

ρ follows a χ2 distribution with r degrees of free-
dom, given as:

Under H0 : χ
2
ρ = N(N +2) ·

r

∑
τ=1

(N− τ)−1 · ρ̂[τ]2 ∼ χ
2(r)

(14)
where ρ̂[τ] denotes the estimator of ρ[τ].

Statistical decision making is achieved by the following test
for α (false alarm) risk level:

χ2
ρ ≤ χ2

1−α
(r) ⇒ H0 is accepted (healthy aircraft)

Else ⇒ H1 is accepted (rotor failure)
(15)

where χ2
1−α

(r) denotes the χ2 distribution’s 1− α critical
point.

Sequential Probability Ratio Test

This method employs the Sequential Probability Ratio Test
(Refs. 19, 20) in order to detect a change in the standard de-
viation σou of the model residual sequence eou[t]. The SPRT

allows for the specification of two values σo and σ1 for the
standard deviation, such that the aircraft is determined to be
healthy if and only if σ ≤ σo, and in faulty state if and only
if σ ≥ σ1. The zone between σo and σ1 constitutes an un-
certainty zone, if any σ is found in this range the decision is
postponed and data or residual collection continues. The val-
ues of σo and σ1 are user defined and express the increase of
the standard deviation in terms of the ratio q = σ1

σo
for which

the system is considered to be faulty. For example, a ratio of
q = 1.1 means that the aircraft is considered faulty whenever
there is an increase of 10% in the standard deviationof the
current residual sequence compared to a threshold value σo.

The SPRT based method leverages both α (false alarm) and
β (missed faults) error probabilities in its design. Fault detec-
tion is based on the SPRT of strength (α,β ) for the following
hypothesis testing problem:

H0 : σou ≤ σ0 (null hypothesis – healthy aircraft)
H1 : σou ≥ σ1 (alternate hypothesis – rotor failure)

(16)

where σou denotes the standard deviation of the residual sig-
nal eou[t] obtained by driving the current signal(s) through the
healthy aircraft model, and σ0, σ1 or their ratio q are user de-
fined values. The basis of the SPRT is the logarithm of the
likelihood ratio function based on n(n≤ N) samples:

L (n) =
n

∑
t=1

ln
f (eou[t]|H1)

f (eou[t]|H0)
= n · ln σ0

σ1
+

σ2
0 −σ2

1

2σ2
0 σ2

1
·

n

∑
t=1

eou[t]2

(17)
with f (eou[t] |Hi) designating the probability density function
of the residual sequence under hypothesis Hi (i = 0,1).

Statistical decision making is then based on the following test
at the (α,β ) risk levels:

L (n)≤ B ⇒ H0 is accepted (healthy aircraft)
L (n)≥ A ⇒ H1 is accepted (rotor failure)
B < L (n)< A ⇒ no decision made (continue the test)

(18)
where:

A = ln
1−β

α
and B = ln

β

1−α
. (19)

Once a decision is made at a stopping time n̂, the test is contin-
ued by resetting L (n̂+1) to zero and continuing by collecting
additional residual samples.

RESULTS AND DISCUSSION

Data Generation

Flight simulation for the hexacopter was performed at 5 m/s
forward speed with severe turbulence according to the Dryden
model. Figures 4 through 6 show attitude time histories for the
hexacopter at 5 m/s forward flight, for cases of rotor 1 failure
(red) and rotor 2 failure (green). For the simulation results
presented, rotor failure (of either rotor 1 or 2) occurs at t = 10
s, indicated by the vertical dashed line.

From Fig. 4, it may be observed that rotor 1 failure results
in a larger deviation in the pitch attitude than in the case of
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Fig. 4. Indicative pitch attitude signals for an airspeed of 5
m/s. The dashed vertical line indicates the time instant of
the fault initiation.

rotor 2 failure. In the case of front rotor failure, the hex-
acopter pitches down without any substantial change in roll
angle (Fig. 5), because the loss of rotor 1 thrust does not sig-
nificantly affect the aircraft roll equilibrium. However, in the
case of side rotor (rotor 2) failure both the pitch (Fig. 4) and
roll (Fig. 5) attitudes change and the roll attitude compensa-
tion is observed to be underdamped. In Fig. 6, the heading of
the aircraft is observed deviating in different directions with
the failure of rotor 1 compared to rotor 2. This is due to the
different rotor spin directions, and consequently the direction
of the hub torque generated by each rotor.

Due to different controller effort for the various levels of tur-
bulence, the aircraft state signals do not show discernible
change in characteristics with respect to the healthy dynam-
ics, and transients due to failure and failure compensation un-
der light and moderate levels of turbulence. Similar trends are
observed for a flight speed of 10 m/s; the fault detection pro-
cess follows the same steps for any other speed. In this paper
we demonstrate indicative results for a single flight speed of
5 m/s while results from various speeds will be presented in a
subsequent publication.

Non-parametric Identification

The STFT-based non-parametric identification of the aircraft
dynamics was based on 60 s (N = 6000 samples; original sig-
nal downsampled to 100 Hz) signals obtained from the aircraft
states, namely the translational and rotational position and ve-
locities at 5 m/s forward speed under severe levels of turbu-
lence. Indicative results for pitch signal for healthy and ro-
tor failure (front) analyzed by the Spectrogram or Short Time
Fourier Transform (STFT) technique are depicted in Fig. 7.
The sampling frequency is taken as 100 Hz and Hamming
window of 300 samples with an overlap of 90% is used. It
can be observed that there is a sharp change of frequency at
the time of rotor failure (t = 10 s), distinguishable from the
spectrogram of the healthy aircraft.
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Fig. 5. Indicative roll attitude signals for an airspeed of 5
m/s.
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Fig. 6. Indicative yaw attitude signals for an airspeed of 5
m/s.

Scalar AR Identification and Fault Detection

Scalar (univariate) parametric identification of the aircraft dy-
namics has been based on 20 s (N = 20000 samples) of pitch
signal obtained from healthy aircraft flight at 5 m/s under se-
vere levels of turbulence. In the present case, the response-
only signals have been obtained from ambient excitation due
to atmospheric turbulence (assumed to be uncorrelated based
on the Dryden specifications). The model parameters and
model order, ai and na, respectively (Eq. 6) need to be es-
timated so that the model properly represents the dynamics
of the system under healthy conditions. The modeling strat-
egy consists of successive fitting of AR(na) models until a
suitable model with least amount of complexity (number of
parameters) and best fit is selected.

Scalar AR Identification Results

Model order selection is based on a combination of Bayesian
Information Criteria (BIC) (Eq. 7) and Residual sum of
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Fig. 7. Spectrogram of the pitch signals under the healthy
and front rotor faulty states for a speed of 5 m/s.

squares normalized by Signal sum of squares (RSS/SSS)
criteria (Eq. 8) as shown in Fig. 8. A model order of na = 6
yields the minimum BIC and this model is represented as
AR(6). Monitoring the stabilization of RSS/SSS criteria
gives the point where increasing model order does not result
further in reduction of prediction errors. This order exhibits
a very low RSS/SSS value of 1.6× 10−10% demonstrating
accurate identification and excellent dynamics representation
of the healthy aircraft pitch signal at 5 m/s and under severe
turbulence. The number of parameters estimated for the
AR(6) model results in a Samples per Parameter (SPP) ratio
of 3333.33 ( N

d ).

The model was validated based on the fact that the model
matching the current state of the system should generate a
white (uncorrelated) residual sequence. Therefore, a healthy
pitch signal has been generated from a different realization of
severe turbulence. The autocorrelation function of the residual
sequences obtained from driving the current signal (healthy)
through the model has been observed to be white with 95%
confidence (confidence intervals shown in blue), as shown
Fig. 9. Next, pitch signals generated under front and side
rotor failures have been passed through the same model to
generate residual sequences. Figure 9 shows that the resid-
ual sequences for different failure cases are serially correlated,
demonstrating that the dynamics of the aircraft have changed
from that of the healthy state, due to failure.

A similar study has been repeated with the roll and yaw sig-
nals to estimate scalar AR models for the healthy aircraft, the
details of which are given in Table 2. A comparison of these
models using various residual-based fault detection methods
will be addressed with respect to their accuracy and ability in
detecting faults, as well as their robustness to false alarms.
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Fig. 8. Scalar AR model order selection criteria.

Residual Based Fault Detection

The current (unknown) pitch signals (5 m/s under se-
vere turbulence) were driven through the identified AR model
to generate residual sequences. Fault detection was attempted
through the characteristic quantities which are functions of
the residual sequences, as previously discussed.

Residual Variance Method

Real-time fault detection is achieved through taking 5 s (N =
5000 samples) windows of the current pitch signal at a time
with the window being updated every 0.1 s. Then the win-
dowed data are filtered through the estimated healthy model
(baseline model) to generate a residual sequence of the same
length. The variance of the generated residuals is statisti-
cally compared to the corresponding baseline residual vari-
ance. The critical limit is determined from the F distribu-
tion’s (1−α) critical limit for 5000, 5000-6 degrees of free-
dom. The hypothesis test is conducted at the α (false alarm)
risk level of 10−12 and the results for different states of the
aircraft (healthy, front, and side rotor failure) are presented
in Fig. 10. In all the figures, the vertical black and the hori-
zontal red dashed lines represent the time of rotor failure and
the critical limit (threshold), respectively. A fault is detected
when the F statistic exceeds the critical limit at the designated
type I risk level.

Since a minimum number of 5000 samples are required so that
the test is statistically significant with minimum false alarms,
the test starts at 5 s. For the current pitch signals coming from
a healthy flight, the test statistics (Eq. 10) always remain be-

Table 2. Model identification summary results.
Model Signals Model Parameters SPP
Type used order estimated

roll AR(6) 6 3333.33
Scalar AR pitch AR(6) 6 3333.33

yaw AR(6) 6 3333.33
Vector AR roll,pitch,yaw AR(4) 36 166.67
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Fig. 9. Autocorrelation function of the pitch residual for
the healthy and considered faulty rotor cases.

low the critical limit for the test, hence the null hypothesis
(that it is a healthy case) is accepted. In the case of signals
generated from an aircraft with rotor failure, the fault detec-
tion at the time of failure is immediate, within 0.1 s, which is
the window update interval, showing a violation of the critical
limit of the test. Thus, the alternate hypothesis of fault is ac-
cepted. As observed from the signals in Fig. 4, the pitch signal
is affected more for the case of front rotor failure than side ro-
tor failure. Hence, the residual variances for pitch in the case
of front rotor failure change more compared to the case side
rotor failure, that is also evident from the extent of limit vi-
olation of the test statistics. Also, it should be noted that the
controller compensates for the fault, returning the pitch dy-
namics to almost the original state after front rotor failure, as
also demonstrated by the test limits receding within the criti-
cal limit after the transient signal has passed. However, in the
case of side rotor failure, the test statistics continue to cross
the critical limit marginally, even after the transient signal has
passed, denoting that the pitch dynamics are have been mod-
ified with respect to the healthy case. This may be due to the
fact that there is strong coupling between pitch and roll con-
trol post failure, as side rotor failure causes a large change in
the roll axis relative to the front rotor (Fig. 5).

Residual Uncorrelatedness Method

Online fault detection via the residual uncorrelatedness
method is performed with the same window length and up-
date interval as discussed in the residual variance method. In
these methods, the test statistics (Eq. 13) based on the auto-
correlation function of the residuals generated from the cur-
rent pitch signals are statistically compared to the autocorre-
lation function of the baseline residuals obtained during the
baseline phase. After a preliminary investigation of the ef-
fect of the maximum lag τ on the method’s performance, a
value of 20 has been chosen as adequate. Hence, the (1−α)
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Fig. 10. Indicative pitch residual variance based fault de-
tection results. The dashed red horizontal line indicates
the statistical threshold at the α = 10−12 risk level. A fault
is detected when the test statistic exceeds the threshold.

critical point of a χ2 distribution with 20 degrees of freedom
denotes the critical limit for the statistical hypothesis testing.
Figure 11 shows the results for different states of the aircraft
for healthy, front and side rotor failure cases, respectively, at
the 10−3 risk level α . The test statistics crossing over the crit-
ical limit (dashed red line) denote rejection of the null hypoth-
esis, thus declaring fault detection. Due to the fault-induced
sharp transients in the signals, the fault detection is immedi-
ate. Similar to the previous method, due to differences in the
pitch signals for front and side rotor failure, the test statistics
exceed the critical limit by a greater amount in the former case
compared to the latter. Also, due to the controller compensa-
tion, the test method is not able to distinguish between healthy
and fault compensated pitch signals, as evident from the test
statistics going back under the limit in Fig. 11. It should be
noted that fault detection is solely based on the response sig-
nals; in future work, the controller signals will be also taken
into account to differentiate between healthy and fault com-
pensated states of the aircraft and enhance the performance of
the methods while taking into account the fault compensation
characteristics of the controller.

Sequential Probability Ratio Test

The Sequential Probability Ratio Test (SPRT) method enables
online fault detection based on residuals generated from driv-
ing the current (unknown) pitch signals through the aforemen-
tioned AR model obtained for the healthy state. To implement
this technique, an appropriate sampling approach needs to se-
lected. This involves determination of the following three as-
pects: (i) the nominal residual standard deviation σo for which
the aircraft is considered healthy, (ii) the standard deviation
ratio q= σ1

σo
, which establishes the standard deviation increase

under which the aircraft will be considered faulty, and (iii) the
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Fig. 11. Indicative pitch residual uncorrelatedness based
fault detection results. The dashed red horizontal line in-
dicates the statistical threshold at the α = 10−3 risk level.

SPRT strength (α, β ).

The residual standard deviation σo for which the aircraft is
considered healthy is determined based on the 20 available
datasets for healthy forward flight at 5 m/s under severe tur-
bulence. From examination of the values of q and (α, β ),
for minimum false alarms without missing any fault detection
these values have been taken as q = 1.1 and (α = 10−12, β =
10−2) and the results for different aircraft states have been
presented in Fig. 12. The test statistic (blue line) (Eq. 17)
exceeding the upper limit denotes a rotor fault, while exceed-
ing the lower limit denotes a healthy aircraft. When the test
statistic lies between the two limits, no decision is made and
the test continues with using new samples (Eq. 18).

In this method, the number of samples to make a decision
is not constant and after a decision is made the SPRT col-
lects new samples until the next decision is made, i.e. the
test runs online and decisions are constantly being made with
the availability of new data samples. In the case of front rotor
failure compensation, the test statistics predict healthy aircraft
whereas in the case of side rotor failure, the test continues to
detect fault even after the transient has passed. Therefore, the
SPRT based on pitch signal is unable to distinguish the air-
craft healthy and fault compensated states in some cases. It
also signifies that the pitch signal is better compensated to
match the healthy aircraft dynamics in the case of front rotor
failure compared to side rotor failure.

Vector AR Identification and Fault Detection

Vector (multivariate) parametric identification of the healthy
aircraft has been based on 20 s (N = 2000 samples at sam-
pling frequency 100 Hz) data sets for the roll, pitch, and yaw
signals, without any external excitation (ambient excitation
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Fig. 12. Indicative results for SPRT based fault detection
with pitch signal.The dashed red horizontal lines indicates
the critical limits at the α = 10−12 and β = 10−2 risk levels.

due to turbulence assumed to be white) generated from for-
ward flight simulation at 5 m/s under severe turbulence. The
model identification follows the same procedure as the scalar
model to estimate the parameters ai and select a model order
na which can accurately represent the dynamics of the healthy
aircraft.

Model Identification

The model order selection based on the BIC and RSS/SSS
criteria yields yields a model order of 4, represented as
VAR(4). The SPP for the model is 166.67 as the number of
estimated parameters for VAR(4) is 36 (as the Ai parameter
matrix is a 3× 3 matrix with i = 1,2,3,4 for model order of
4). The roll, pitch and yaw signal of the healthy aircraft flying
at 5 m/s for different severe turbulence realization has been
driven through the model estimated to generate residuals.
The autocorrelation and cross-correlation functions of the
three residual sequences generated are observed to be white
with 95% confidence. For signals generated for different
faulty states, the residuals are found to be correlated. This
provides validation of the model, it is capable of representing
the dynamics of a healthy aircraft under the considered flight
conditions.

VAR Residual Based Fault Detection

The current (unknown) signals (roll, pitch and yaw in
that order), when driven through the VAR(4) model estimated
in the previous section, yield three sets of residual sequences.
The residual based fault detection is performed by the statis-
tical comparison of each characteristic quantity obtained via
the current residual sequence with the corresponding quantity
obtained via the use of the baseline signals (signal used to
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estimate the healthy VAR model) and corresponding residual
series through the baseline VAR model. In other words, the
characteristic quantity obtained from the current roll residual
sequence is compared to the baseline quantity obtained
from the roll residual sequence. Therefore, the statistical
hypothesis testing is performed thrice for a particular time
window (duration of signal measured in number of samples).

Residual Variance Method

The current 5-second-long signals (N = 500 samples sampled
at 100 Hz frequency), where the window is updated every
0.1s, are driven through the VAR(4) model to generate three
sets of residual sequences. Fault detection is achieved through
three parallel statistical hypotheses testing of the variance of
the current residuals to the variance of the baseline residuals
(Eq. 10). The critical limit is determined from the F distribu-
tion’s (1−α) critical limit for 500, 500-36 degrees of freedom
(because the total number of estimated parameters for the 3-
variate VAR(4) model is 36). The statistical hypothesis test is
conducted at the α (false alarm) risk level of 10−12 to mini-
mize the false alarms and the results for different states of the
aircraft are presented in Fig. 13.

To collect a minimum of 500 samples for testing, the test starts
from 5 s. For current signals obtained from the healthy flight,
the test statistics for each attitude signal fall below the critical
limit for the test, denoting acceptance of the null hypothesis.
With front and side rotor failure at 10 s, the fault detection,
which is evident from all the three test statistics exceeding the
critical limit, is immediate. Here, it is interesting to note that
the extent of violation is greater in the case of side rotor fail-
ure than that for front rotor failure, contrary to the observation
in case of scalar AR model of pitch signal only. In the case
of side rotor all the three signals (roll, pitch and yaw) change
drastically, while in front rotor failure the roll attitude does
not change much. As the model captures the correlation be-
tween the different signals, the prediction errors are larger for
side rotor failure than front rotor failure, as evident from their
higher level of crossing the critical limit.

It is also observed that the test statistics for the pitch residual
variance recede below the critical limit after the controller has
stabilized the system, while the roll and yaw residuals con-
tinue to violate the critical limit, which indicates a faulty sys-
tem. This suggests that the controller compensates for the
pitch signal better than the other two attitudes and returns
the longitudinal dynamics to a state comparable to that of the
healthy aircraft.

Residual Uncorrelatedness Method

Online fault detection by residual uncorrelatedness is per-
formed with 5 s (N = 500 samples) window length and update
interval of 0.1 s for each residual sequence. In this method,
the characteristic quantity is the autocorrelation function of
the residuals with a maximum lag τ = 20. The critical limit
of the statistical hypothesis testing is given as the (1−α) crit-
ical point of a χ2 distribution with 20 degrees of freedom.
Figure 14 shows three parallel hypothesis tests on roll, pitch
and yaw residuals for different current states of the aircraft:
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Fig. 13. Indicative residual variance based fault detection
results. The dashed red horizontal line indicates the sta-
tistical threshold at the α = 10−12 risk level.
healthy aircraft, front, and side rotor failure, respectively, at
the risk level α of 10−3.

In the healthy case, the test statistic for all the three signals is
lower than the the critical limit, correctly declaring the system
as healthy. For the front, and side rotor failure at 10 s, fault
detection is fast. The test statistics for side rotor failure exceed
the critical limit by a greater amount than in case of front ro-
tor failure due to significant change of all three signals in the
former compared to only two in the latter, as discussed. Here,
post fault compensation, all three test statistics continue to vi-
olate the critical limit, indicating a faulty system. Hence, the
test is able to distinguish a healthy system from a fault com-
pensated system from the changes in the three attitude signals
of the aircraft. It should be noted that the test statistic for roll
in the case of side rotor failure shows the maximum devia-
tion, as the controller takes longer time to compensate for it,
evident in Fig. 5.

Sequential Probability Ratio Test

The SPRT runs online with the current residuals for roll, pitch
and yaw generated from driving the corresponding attitude
signals through the VAR(4) model. The appropriate sampling
plan to implement this test procedure is different for each of
the signals and is determined from the scalar AR modeling of
each signal. The value of the variance ratio q is taken to be
1.5, 1.1 and 1.2 for roll, pitch, and yaw, respectively. These
values have been decided through rigorous testing to improve
false alarms without missing any faults. The nominal residual
standard deviation for the attitude signals for which the air-
craft is considered healthy are determined based on 20 base-
line data sets (generated from simulation of healthy aircraft
at 5 m/s under severe turbulence) driven through the baseline
model. The strength of SPRT (α, β ) is taken as 10−12 and
10−3, respectively.
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Fig. 14. Indicative residual uncorrelatedness based fault
detection results. The dashed red horizontal line indicates
the statistical threshold at the α = 10−3 risk level.
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Fig. 15. Indicative results for SPRT method based on the
VAR(4) model for healthy aircraft. The dashed red hori-
zontal lines indicate the critical limits at the α = 10−12 and
β = 10−2 risk levels.

Indicative fault detection results are presented in Figs. 15
through 17. The aircraft is determined to be in its healthy
state when the test statistic exceeds the lower critical point
(Fig. 15). Conversely, a fault is detected when the test statistic
(vertical axis) exceeds the upper critical point. After a critical
point is exceeded, a decision is made, consequently the test
statistic is reset to zero and the test continues. Hence, during
testing multiple decisions may be made. Evidently, correct
detection is obtained in each test case, as the test statistic is
shown to exceed multiple times (multiple correct decisions)

0 10 20 30 40 50 60
-10

0
10
20
30

Roll

0 10 20 30 40 50 60
-10

0
10
20
30

T
e

s
t 

s
ta

ti
s
ti
c
s Pitch

0 10 20 30 40 50 60

Time (s)

-10
0

10
20
30

Yaw

Fig. 16. Indicative results for SPRT method based on the
VAR(4) model for front rotor failure. The dashed red hor-
izontal lines indicate the critical limits at the α = 10−12

and β = 10−2 risk levels.
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Fig. 17. Indicative results for SPRT based on the VAR(4)
model for side rotor failure. The dashed red horizontal
lines indicate the critical limits at the α = 10−12 and β =
10−2 risk levels.
the lower critical point in all three signals for the healthy case.

The test statistics also exceed the upper critical point multi-
ple times (multiple correct fault detections) in the rotor failure
cases, and several observations can be made for the region of
post failure failure compensation. The roll and yaw residuals
continue to predict faulty state even after the passing of the
transient due to rotor failure in all cases. However, the test
statistics based on pitch residual settles to the healthy case in
front rotor failure, once the fault has been taken care of by
the controller (Fig. 16), similar to the results of the scalar AR
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Table 3. Parameters used for various fault detection methods
Model type Fault detection method Parameters

α β q
Residual Variance 1e−12 - -

Scalar AR Residual Whiteness 1e−3 - -
Roll SPRT 1e−12 1e−2 1.5

Residual Variance 1e−12 - -
Scalar AR Residual Whiteness 1e−3 - -
Pitch SPRT 1e−12 1e−2 1.1

Residual Variance 1e−12 - -
Scalar AR Residual Whiteness 1e−3 - -
Yaw SPRT 1e−12 1e−2 1.2

Residual Variance 1e−12 - -
Vector AR Residual Whiteness 1e−3 - -
Roll,Pitch,Yaw SPRT 1e−12 1e−2 1.5,1.1,1.2

α: Type I (false alarms) risk level
β : Type II (missed faults) risk level

q: Ratio of residual standard deviation for the system to be considered faulty

pitch signal case (Fig. 12). However, in the case of side rotor
failure, this test based on pitch residual is able to distinguish
between healthy and fault compensated states (Fig. 17). It is
observed that the SPRT method based on the yaw residuals is
best suited for distinguishing post failure compensation by the
controller as it continues to indicate that the system is faulty
unambiguously as opposed to the roll and pitch signals which
may indicate a healthy state in this region.

Comparative Assessment of Different Models and Fault
Detection Methods

The scalar AR model estimated using the pitch signal of a
healthy aircraft flying at a forward speed of 5 m/s under severe
level of turbulence exhibits excellent fault detection results
with the residual variance and SPRT methods, for current sig-
nals obtained from flight at 5 m/s and all considered levels of
turbulence (light, moderate and severe) (Table 4). The resid-
ual uncorrelatedness method is rendered ineffective when the
level of turbulence is changed from severe (level for which the
model has been estimated) to moderate and light levels. This
method shows 100% false alarms for healthy datasets under
different levels of turbulence than that used for the model es-
timation. It should be noted that the forward speed of flight
has been held constant at 5 m/s for modeling and validation
phase for all cases.
The 3-variate VAR(4) model estimated from the roll, pitch,
and yaw signals of the healthy aircraft under the same forward
speed and level of turbulence as above, exhibits superior per-
formance than the scalar AR model. The VAR-based methods
achieve remarkable results for all levels of turbulence consid-
ered in this study (Table 4). In addition, the VAR-based meth-
ods have the ability to distinguish between healthy and fault
compensated conditions of the aircraft, after the transient dy-
namics have been compensated by the controller.
With the exception of the scalar AR model estimated using
the roll signal, all the fault detection methods can detect rotor

failures within 0.1 s of the event of failure. The scalar meth-
ods based on the estimated with roll signal, show a somewhat
delayed fault detection (maximum delay being 1.2 s) using
the residual variance method and several missed faults using
residual uncorrelatedness method for front rotor failure. This
is probably due to the fact the roll does not change signifi-
cantly in this case. On the other hand, the SPRT method does
not miss nor shows a delay in detecting front rotor failures
using the same scalar model.

The SPRT-based method is able to achieve faster fault de-
tection that is better suited for online application as it uses
a smaller number of testing samples than the other methods.
In addition, the detection time and number of sample needed
for fault detection can be theoretically established and inves-
tigated via a well-defined statistical framework (Ref. 9).

Table 3 outlines the different parameters (α,β ,q) selected
for each residual based fault detection method based on the
achieved effectiveness and robustness. If α is not properly
adjusted, the method loses efficiency with respect to the prob-
ability of false alarms and missed faults. Hence, it is advised
to make an initial investigation on the number of false alarms
for different levels of turbulence using several healthy data
sets. Then, missed fault errors may be checked with data cor-
responding to various rotor failure states. Moreover, for ro-
bust performance of parametric methods, a very small value
of the type I risk (α) is often required. This is due to the fact
that the stochastic time series models (like AR, ARMA, ARX,
state space, etc.) used for modeling the dynamics are still in-
capable of fully capturing the experimental, operational and
environmental uncertainties that the aircraft may be subjected
to. Therefore, to “compensate” for the lack of effective un-
certainty modeling, a very small α is often selected. Another
important factor is the number of samples needed for hypoth-
esis testing, since the chance of missing faults (β ) depends
upon sample size. For the SPRT method, the values of type I
risk (α), type II risk (β ), and ratio of residual standard devi-
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Table 4. Accuracy of different methods
Model type Fault detection method False Alarms % Missed Rotor Failure

Rotor (1) Rotor (2) Rotor (6)
Residual Variance 28.98/15.48/14.57 0/0/0 0/0/0 0/0/0

Scalar AR Residual Whiteness 3.81/-/- 17/-/- 0/-/- 0/-/-
Roll SPRT 0.077/0.0025/0 0/0/0 0/0/0 0/0/0

Residual Variance 0.082/0/0 0/0/0 0/0/0 0/0/0
Scalar AR Residual Whiteness 0.61/-/- 0/-/- 0/-/- 0/-/-
Pitch SPRT 0.34/0/0 0/0/0 0/0/0 0/0/0

Residual Variance 15.35/2.92/3.59 0/0/0 0/0/0 0/0/0
Scalar AR Residual Whiteness 10.93/-/- 0/-/- 0/-/- 0/-/-
Yaw SPRT 2.68/1.03/1.09 0/0/0 0/0/0 0/0/0

Residual Variance 0.045/ 0.49/ 0.25 0/0/0 0/0/0 0/0/0
Vector AR Residual Whiteness 0.16 / 0.018 / 0.24 0/0/0 0/0/0 0/0/0
Roll,Pitch,Yaw SPRT 0.065/0/0 0/0/0 0/0/0 0/0/0

False Alarms % for Severe/ Moderate/ Light levels of turbulence
Missed Faults for Severe/ Moderate/ Light levels of turbulence out of 20 datasets each

ation (which gives the increase in standard deviation required
to consider the system to be faulty) have been selected care-
fully to minimize false alarms in healthy signals, but without
missing any faults in case of various rotor failures.

CONCLUSIONS

• Statistical time series methods for rotor fault detection
in multicopters achieve effective detection based on (i)
ambient (white) excitation and aircraft state (scalar or
vector) signals, (ii) statistical model building, and (iii)
statistical decision making under uncertainty.

• Both scalar and vector statistical time series methods
have shown remarkable results in effectively detecting
faults, with the vector methods achieving improved per-
formance with respect to false alarms, missed faults and
distinguishing between healthy and faulty compensated
states.

• Parametric time series methods are more elaborate and
require higher user expertise compared to generally sim-
pler non–parametric approaches like the Spectrogram,
but have greater sensitivity to faults and accuracy of de-
tection when fault occurs in real time.

• Vector methods based on a multivariate model are more
elaborate, but have the potential of further enhanced per-
formance such as distinction between healthy and fault
compensated states from the aircraft states alone, with-
out the knowledge of controller effort. Also, using the
difference between autocorrelation and cross-correlation
functions of the signal residuals in case of different rotor
failures, fault identification is possible.

• The knowledge of controller effort for different levels
of turbulence can be used along with the aircraft output
to match the performance of simple scalar models with
more complex vector models. This can improve their ap-
plicability in all levels of turbulence as well as the ability

to distinguish between healthy and post-failure controller
compensated states.

• In the future, the modeling will be expanded to Func-
tionally Pooled (FP) model based methods that will in-
clude various forward flight speeds and levels of turbu-
lence into a single integrated framework for complete ro-
tor fault detection (abrupt failure and continuous degra-
dation), identification and quantification.
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