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Abstract
Developing standard, well-vetted methods for modeling and simulation, prediction of flying/handling qualities, and control 
system design is critical for improving safety and quality control of multirotor electric aerial vehicles. This paper explores two 
methods for modeling the dynamics of a small (56 cm, 1.56 kg) hexacopter at hover and forward flight. The first modeling 
method was system identification from flight data, the second method was a physics-based blade element model with 10 
state Peter-He inflow. Evaluation of the fidelity for both the system-identification and physics-based models was completed 
by comparison to flight data at hover and forward flight. The results were used to classify the importance of key dynamic 
building blocks on the model fidelity, such as motor/rotor lag dynamics, inertia, and dynamic inflow.

Keywords  System identification · Flight mechanics · Electric VTOL (eVTOL)

1  Introduction

Vertical lift multirotor electric aerial vehicles are gaining 
interest in civilian and military sectors because of their util-
ity in photography, law enforcement, firefighting, package 
delivery, surveillance and reconnaissance, among many 
other applications in both the civilian and military sectors. In 
fact, the FAA predicts that use of commercial (non-model) 
use of small unmanned aerial systems (which is largely 
dominated by multirotor electric vehicles) will increase by 
a factor of 4 by 2022 [1]. Larger vertical lift multirotor elec-
tric vehicles (eVTOL) are also being developed because of 
their potential future role in urban air mobility [2]. The ver-
satility provided by vertical lift, along with the mechanical 

simplicity of the multirotor configuration, and efficiency of 
distributed electric propulsion are the key reasons for their 
popularity. However, these aircraft are unstable when un-
augmented and can be difficult to control in winds and turbu-
lence. In addition, one study of drone related air-traffic inci-
dents in our national airspace (during 2013–2015) states that 
out of 340 incidents, where the drone type was identified in 
the reports, 246 were multirotor aircraft [3]. To help address 
the issue of airworthiness, a process for defining unmanned 
aircraft systems handling qualities has been proposed [4].

Developing standard, well-vetted methods for modeling 
and simulation, prediction of flying/handling qualities, and 
control system design is critical for improving safety and 
quality control of these vehicles. Accurate dynamic mod-
eling is an important element to providing predicted flying/
handling qualities, and to developing safe, robust and reli-
able control systems for all air vehicles, but especially for 
unstable vehicles, such as multirotor vertical lift aircraft. 
To address the need for high quality models of multirotor 
vehicles, this paper demonstrates how system identification 
models and physics-based models can both provide flight 
accurate simulation models.

1.1 � Background and purpose

Although remotely piloted helicopters have existed since 
the 1960s [5], modern unmanned vertical lift unmanned 
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aerial systems, which have onboard flight control systems 
and can navigate autonomously without a remote pilot in 
the loop, began development in the 1990s. Many of the 
early unmanned vertical lift systems were conventional 
helicopter configurations—either converted full-scale 
manned helicopters (Fire Scout [6], Burro [7]) or min-
iaturized helicopters (Yamaha R50 [8], Ikarus [9]). As 
these systems relied on flight control systems for stability, 
as well as navigation, the development of accurate flight 
dynamics models and simulators were imperative to the 
successful design and test of flight control systems and 
autonomous operations. As such, methods for modeling 
conventional helicopters were adapted for use in unmanned 
systems, where now physics-based and system identifi-
cation modeling methods that had been established for 
manned helicopters could be directly applied to unmanned 
systems as described in Refs. [6–9]. The role of system 
identification began to grow, as the importance of rapid 
development of unmanned aerial systems was emphasized 
in Ref. [10]. System identification models and physics-
based models can be used hand-in-hand, complimenting 
each other. System identification provide very accurate 
linear models at point conditions for accurate flight con-
trol design, and can also implemented in a quasi-nonlinear 
full envelope stitched model [11]. In contrast, physics-
based models provide full envelope nonlinear dynamics 
for flight simulation but often need to be tuned to better 
match flight data. System identification can only be imple-
mented after the aircraft is constructed and flying, whereas 
physics-based models can provide dynamics models prior 
to flight in order to aid design decisions and development 
of the control system. Once flight test is possible, system 
identification can be used directly and/or to update the 
physics-based models [12–14]. For conventional verti-
cal lift aircraft, frequency domain system identification 
as implemented by the CIFERⓇ software [15], and blade-
element physics-based models have been widely used. To 
address the need for accurate flight dynamics models of 
electric multirotor vehicles, it is natural to look to methods 
validated in the past for conventional single-rotor helicop-
ters. In addition, in fact, system identification has been 
shown to work well for small (52 cm hub-to-hub) electric 
quadcopters [16, 17], as well as midsize (127 cm hub-to-
hub) quadcopter, hexacopters and octacopters [18, 19]. As 
when applying to any new configuration, methods must 
be adapted to address the unique challenges and dynam-
ics of the new configuration. Herein, the authors describe 
how system identification and physics-based blade element 
models can be used to understand and accurately model 
the dynamics of multirotor electric unmanned aerial vehi-
cles. For multirotor electric vehicles, this paper provides 
the following contributions:

–	 Evaluation of fidelity for both physics-based and sys-
tem-identification models compared to flight data col-
lected at hover and forward flight

–	 Documentation of differences in hover versus forward 
flight dynamics

–	 Apply system identification results to improve physics-
based models of multirotor electric vehicles

–	 Classify the importance of key dynamic building blocks 
on the model fidelity of physics-based models, such as 
motor/rotor lag dynamics, inertia, and dynamic inflow

1.2 � Test aircraft

The model used as the example vehicle is the University 
of Portland hexacopter. It is based on a DJI Flamewheel 

Fig. 1   University of Portland hexacopter

Table 1   Specifications for hexacopter

Aircraft
Weight, with Battery 1550g
Diameter (hub-to-hub) 55cm
Inertia (Swing Test)
Ixx 0.0266 kg m 2

Iyy 0.0266 kg m 2

Izz 0.0498 kg m 2

Brushless Motors (6 total)
Weight, each 47g
Kv 930 RPM/V
Electronic Speed Controller (6 total)
Current (Continuous) 30A
Weight, each 32g
Rotors (6 total)
Diameter 25.4cm
Pitch 12cm
Weight, each 10g
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F550 frame and has a Pixhawk mini installed onboard. The 
hexacopter is pictured in Fig. 1, and detailed specifications 
are listed in Table 1.

2 � Modeling methods

Two modeling methods are used to demonstrate flight accu-
rate modeling methods for multirotor aircraft–frequency 
domain system identification using CIFERⓇ [15] and phys-
ics-based modeling methods using Rensselaer Multicopter 
Analysis Code (RMAC) [20]. The system identification 
process identifies linear dynamic models of the aircraft 
from flight test data, so is inherently flight-accurate. System 
identification and trim data are collected at various flight 
conditions, and then can be stitched into a full envelope 
model [12]. The RMAC model is a physics-based model, so 
is able to simulate nonlinear dynamics of the full envelope 
and can be easily configured to simulate different multiro-
tor configurations. Linear models can be extracted from the 
RMAC model. However, the model still must be validated 
against flight data to ensure flight-accuracy. A more detailed 
description of each modeling method is given in the follow-
ing subsections of this paper.

2.1 � Frequency‑domain system identification

Frequency domain system identification is a process which 
extracts state-space models of the vehicle from flight data. 
Several steps are taken to perform system identification of 
the multirotor vehicle:

1.	 Frequency sweeps were collected in flight at hover and 
forward flight (5 m/s). The sweeps are automated and 
input at the mixer, as shown for the roll sweep in Fig. 2. 
The data were collected with the autopilot in an attitude 
command mode (“stabilize-mode” in Ardupilot [21]). 
Inputs are measured at the input to the mixer, e.g., �lat 
for the roll axis sweep, as shown in Fig. 2. The measured 
outputs include angular rates (p, q, r), angular attitudes 
( � , � , � ), and accelerations ( ax , ay , az).

2.	 Frequency responses of the multirotor vehicle are identi-
fied from the mixer to the aircraft response, for example 

p∕�lat . Given that the mixer is somewhat nonlinear and 
not well documented, frequency responses of the mixer 
are also determined via system identification, from all 
inputs to all motors (e.g., for roll axis �motor,i∕�lat ). The 
mixer is needed for comparison with RMAC which has 
inputs based on motor RPM, not mixer inputs.

3.	 A mixing matrix is identified. This is not needed for 
model identification relative to the mixer inputs (Step 
4) but allows conversion from the control axes inputs to 
the motor inputs, which is needed for later comparison 
to RMAC. The mixer matrix is identified in the follow-
ing form: 

 where, for example, the M11 term would be identified 
by fitting a gain to the identified frequency response of 
�motor,1∕�lat.

4.	 Model identification of state-space models relative to the 
mixer inputs (e.g., �lat in Fig. 2), is performed by opti-
mizing the parameters in the state-space model to best 
fit the identified frequency responses from flight data. 
At hover, decoupled state-space models of the vehicle 
dynamics are determined for pitch, roll, yaw and heave. 
The multirotor configuration, which has counter rotat-
ing propellers, has negligible coupling of the vehicle 
dynamics at hover, but some coupling of the pitch/heave 
response in forward flight. The model structure includes 
the effect of the motor dynamics, which is modeled as 
first order lag with time constant �lag . Due to the decou-
pled nature of the hexacopter (because of its symmetry 
and counter rotating rotors) two 3-DOF models are iden-
tified. At hover, many of the pitch and roll parameters 
are constrained between the two decoupled structures 
at hover to model the symmetry of the dynamics. Equa-
tion 2 represents the longitudinal-heave dynamics and 
Eq. 3 is lateral-directional dynamics: 

(1)

⎡⎢⎢⎢⎢⎢⎢⎣

�motor,1
�motor,2
�motor,3
�motor,4
�motor,5
�motor,6

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

M51 M52 M53 M54

M61 M62 M63 M64

⎤⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�lat
�lon
�yaw
�thr

⎤
⎥⎥⎥⎦

Fig. 2   Block diagram of 
hexacopter control system and 
frequency sweep input location
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 The inputs to the model are the longitudinal control 
input �lon , lateral control input �lat , yaw control input 
�yaw and the throttle control input �thr , all measured just 
upstream of the mixer (in normalized units, %/100). The 
aircraft velocity states were longitudinal velocity u (ft/s), 
lateral velocity v (ft/s), vertical velocity w (ft/s). The 
aircraft angular velocity states were roll rate p (rad/s), 
pitch rate q (rad/s), and yaw rate r (rad/s). The attitude 
states were roll attitude � (rad), pitch attitude � (rad).

	   Motor lag states Tlon , Tlat , Tyaw and Tthr were intro-
duced to each corresponding control input. The associ-
ated motor lag �lag (rad/s) was identified and constrained 
between all cases for both hover and forward flight. This 
motor lag represents the physical constraint that the 
motors cannot provide instantaneous change in thrust 
(due to the inertia of the motor and rotor blades). This 
motor lag as well as a lead term ( N′

�yaw
 ) affect the yaw 

rate response over the frequency range of interest. The 
motor lead frequency that affects the yaw response can 
be derived from Eq. 3 and takes the form: 

(2)

⎡⎢⎢⎢⎢⎢⎢⎣

u̇

ẇ

q̇

𝜃̇

Ṫlon
Ṫthr

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

Xu Xw (−w0 + Xq) − g cos 𝜃0 0 0

Zu Zw (u0 + Zq) g sin 𝜃0 Z𝛿lon Z𝛿thr
Mu Mw Mq 0 M𝛿lon

M𝛿thr

0 1 0 0 0 0

0 0 0 0 − 𝜔lag 0

0 0 0 0 0 − 𝜔lag

⎤⎥⎥⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎢⎢⎢⎣

u

w

q

𝜃

Tlon
Tthr

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

𝜔lag 0

0 𝜔lag

⎤
⎥⎥⎥⎥⎥⎥⎦

�
𝛿lon(t − 𝜏)

𝛿thr(t − 𝜏)

�

(3)

⎡⎢⎢⎢⎢⎢⎢⎣

v̇

ṗ

ṙ

𝜙̇

Ṫlat
Ṫyaw

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

Yv w0 − u0 g sin 𝜃0 0 0

Lv Lp Lr 0 L𝛿lat L𝛿yaw
Nv Np Nr 0 N𝛿lat

N𝛿yaw

0 1 0 0 0 0

0 0 0 0 − 𝜔lag 0

0 0 0 0 0 − 𝜔lag

⎤⎥⎥⎥⎥⎥⎥⎦
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v
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r

𝜙

Tlat
Tyaw
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+

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 N�
𝛿yaw

0 0

𝜔lag 0

0 𝜔lag

⎤⎥⎥⎥⎥⎥⎥⎦

+

�
𝛿lat(t − 𝜏)

𝛿yaw(t − 𝜏)

�

(4)�lead = �lag

(
1 +

N�yaw

N�
�yaw

)

 This model structure and hover system identification of 
the University of Portland hexacopter is described more 
fully in Ref. [22].

5.	 Model Verification is performed against doublets col-
lected in flight to ensure the model also has good predic-
tive capability in the time domain.

3 � Rensselaer Multicopter Analysis Code

The Rensselaer Multicopter Analysis Code (RMAC) [20] is 
a low-cost comprehensive analysis tool designed for use on 
multirotor vertical lift aircraft, such as the UP hexacopter. 
The multirotor vehicle is modeled as a 6-DOF, second-order 
dynamic rigid body. The equations of motion are rewritten in 
first-order form by introducing kinematic states for the posi-
tion and attitude of the aircraft, whose derivatives are given 
by Eqs. 5 and 6, where the 3x3 matrix R represents a rotation 
matrix which rotates a vector from the body-attached refer-
ence frame to the inertial reference frame, and the matrix B 
expresses the rates of change of the 3-2-1 Euler angles in 
terms of the body angular velocities:

The linear and angular accelerations of the hexacopter are 
given by Eqs. 7 and 8, respectively. These equations are 
obtained through a simple summation of forces and moments 
about the hexacopter center of gravity. The forces acting on 
the aircraft include gravity, rotated into the body-attached 
reference frame, fuselage drag, rotor forces. Fuselage drag 
and rotor forces induce moments about the center of grav-
ity, with moment arms �d and �i , respectively. In addition, 
the moments acting about the hub of each rotor, Mi , are also 
included in Eq. 8. Because these equilibrium equations are 
resolved in the non-inertial body-attached axes, the Corio-
lis and inertial coupling effects must be included in Eqs. 7 
and  8, respectively:

(5)
⎡⎢⎢⎣

ẋ

ẏ

ż

⎤⎥⎥⎦
= R
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u
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⎤⎥⎥⎦
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(6)
⎡⎢⎢⎣

𝜙̇

𝜃̇

𝜓̇
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p

q
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⎤⎥⎥⎦
= B�

(7)
⎡⎢⎢⎣

u̇

v̇

ẇ

⎤⎥⎥⎦
= RT

⎡⎢⎢⎣

0

0

g

⎤⎥⎥⎦
+

1

m

�
�fus +

6�
i=1

�i

�
− � × �
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where �fus represents the fuselage drag, parallel to the 
freestream velocity.

Rotor forces ( �i ) and hub moments ( �i ) are calculated 
using blade element theory, and are a function of the speed 
of the rotor and the linear and rotational velocity of the rotor 
hub, which are, in turn, functions of the aircraft linear and 
angular velocity. Rotor induced velocities are modeled using 
a 10 state, 3x4 Peters-He dynamic wake model, with each 
rotor possessing its own unique states. The higher frequency 
states are necessary to capture the steady pitching moment 
[23]. The dynamics governing the induced flow are given 
by Eq. 9. The matrices M, V, and L are available in closed 
form in Ref. [24]. In RMAC, the forcing function � is phase-
averaged over a revolution, so the inflow states � and � are 
similarly phase-averaged:

To determine an equilibrium condition, Eqs. 7–9 must be 
solved such that the accelerations and inflow derivatives 
are zero. The trim variables available to RMAC are: the 
pitch and roll attitudes (used to trim longitudinal and lateral 
accelerations), the inflow states (used to solve the inflow 
equations), and the six rotor speeds �i (to solve the heave 
and moment equations). With 10 inflow states per rotor, this 
results in a system of 66 algebraic equations, to be solved 
with 68 inputs. To reduce the space of trim solutions to a 
single unique condition, the multirotor coordinate transform 
[25], is used to rewrite �i in terms of aircraft-level modes. 
The transform is given by Eq. 10, where rotor 1 is defined 
as the front-right rotor, and rotor number increases counter-
clockwise as viewed from above:

Linear approximations to the dynamics are generated by 
numerically perturbing the aircraft dynamic states about 
an equilibrium condition, and using the resulting state 
derivatives to estimate stability derivatives via centered dif-
ference. Similarly, the control inputs are perturbed about 
an equilibrium condition to determine the control deriva-
tives. This results in a linear, 72 state, 4 input state-space 
model of Eq. 11. Because the inflow dynamics are very high 

(8)
⎡
⎢⎢⎣

ṗ

q̇

ṙ

⎤
⎥⎥⎦
= �

−1

�
�D × �fus +

6�
i=1

(�i + �i × �i)

�
− � × ��

(9)
𝛼̇ =𝛺(Mc)−1(𝜏c − Vc(Lc)−1𝛼)

𝛽̇ =𝛺(Ms)−1(𝜏s − Vs(Ls)−1𝛽)

(10)

⎡⎢⎢⎢⎢⎢⎢⎣

�1

�2

�3

�4

�5

�6

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1∕2 −
√
3∕2 1

1 − 1∕2 −
√
3∕2 − 1

1 − 1 0 1

1 − 1∕2
√
3∕2 − 1

1 1∕2
√
3∕2 1

1 1 0 − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

�0

�1s

�1c

�0d

⎤⎥⎥⎥⎦

frequency and stable, the associated states are removed via 
static condensation, resulting in a 12 state, 4 input state 
space model (Eq. 12). This is mathematically equivalent to 
eliminating the derivative terms from Eq. 9 and treating it as 
an static, algebraic equation instead of an ODE:

4 � Models at hover and 5 m/s

This section will describe the linear parametric models of 
the University of Portland hexacopter that were determined 
by system identification and RMAC. The model structure 
shown in Eqs. 2,3 is used in both cases. For the system 
identification model, theoretical accuracy parameters are 
provided with the identified stability derivatives. These 
parameters are critical to the model structure determina-
tion process–resulting in removal of stability and control 
derivatives that have poor theoretical accuracy and as such 
cannot be identified. Note that in the case of the physics-
based RMAC model, theoretical accuracy parameters are 
not used, because the parameters are extracted directly via 
perturbation methods from the RMAC model. In some cases, 
stability or control derivatives that were dropped from the 
model structure in system identification are present in the 
RMAC model, because the physics-based model provided a 
result for that parameter.

4.1 � Mixer identification

Frequency sweeps were collected in flight at hover and at 
5 m/s. For use in model comparison between RMAC and 
the identified model, a flight-accurate mixer was needed as 
described in Sect. 2.1. For each axis, the mixer was identi-
fied using the frequency response between the the mixer 
input and the pulse-width modulated (PWM) command to 
the motor. This effectively fits a linear model to the nonlinear 
mixer. There are 24 frequency responses in all–one response 
from each control axis ( �thr , �lat , �lon , �yaw ) to each of the 
motors ( �motor,1 , �motor,2 , �motor,3 , �motor,4 , �motor,5 , �motor,6 ). 
Therefore, each mixer term Mij in Eq. 1 can be identified by 
fitting the linear range of each of the frequency responses. 
As an example, the frequency response �motor,1∕�yaw is shown 
in Fig. 3; the coherence is above 0.6 between 1 and 15 rad/s, 
a fairly wide frequency range. Because we are fitting a static 

(11)
[
ẋR
ẋI

]
=

[
ARR ARI

AIR AII

] [
xR
xI

]
+

[
BR

BI

]
u

(12)

ẋR = ĀxR + B̄u

Ā = ARR − ARIA
−1
II
AIR

B̄ = BR − ARIA
−1
II
BI
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gain to this frequency response, the magnitude of Mij is cho-
sen to best fit the magnitude response, and the sign is either 
±1 , depending on the identified phase ( 0◦ corresponds to 
positive sign, and ±180◦ corresponds to a negative sign). 
The static gain fits the frequency response excellently, with 
a cost J = 4.21 . Considering all of the elements of the mixer, 
the average cost Jave = 30.72 , indicating a very good model 
(according to guidelines established in Ref. [15]).

4.2 � System identification models

The flight records were then processed using the CIFERⓇ 
software to determine non-parametric frequency responses 
models from these data. Note that due to the largely decou-
pled nature of the hexacopter at hover, the responses were 
considered as single input. No multi-input processing to 
remove the effects of off-axis inputs was performed at hover. 
For forward flight, some aerodynamic and kinematic cou-
pling is present, and as such multi-input analysis and pro-
cessing was performed. The identification process directly 
provides the linearized stability derivatives and their theo-
retical accuracy parameters. The resulting hover and forward 
flight models are shown in Table 2. Note that any param-
eters not shown in the table have values of zero for both 
flight conditions. Cramer Rao (CR) and Insensitivity (I) are 
theoretical accuracy parameters. It is desired that CR < 20% 
and I < 10% , which indicates the parameter is sensitive and 
uncorrelated to any other parameters. When a parameter has 
borderline theoretical accuracy, it is retained in the model 
structure, because the model fit requires that term for a good 
prediction of flight data. This was the case of the Lp and Mq 
parameters in forward flight. However, at hover these param-
eters were very insensitive and as such were dropped from 
the model structure and set to zero without compromising 
model fit.

It should be noted that in several cases, the model was con-
strained to ensure that symmetry in the physics was retained. 
For example, at hover the model structure was setup so that 
Xu = Yv and that Lv = −Mu . In addition, the motor lag dynam-
ics were fixed at 15 rad/s, which was determined based on the 
dynamics at hover and then fixed in the forward flight identi-
fication. As one may observe in Eq. 3, the motor lag dynamics 
were supplemented with a lead input N′

�yaw
 . The yaw input is 

generated by differential torque on the motors, not the motor 
thrust as in the other control inputs, and has been observed to 
have a lead-lag characteristic [18]. For this aircraft, the lead 
zero is at �lead = 5.1 rad/s as calculated by Eq. 4 and the lag 
pole at �lag = 15 rad/s. From Table 2, the following conclu-
sions about the hexacopter dynamics in hover versus forward 
flight can be drawn: 

1.	 Speed damping derivatives Lv and Mu , which largely 
dominate the roll and pitch dynamics at hover, are some-
what reduced in forward flight.

2.	 Pitch and roll damping ( Lp and Mq ) play a larger role 
in the dynamics of forward flight; however, the theo-
retical accuracy is borderline, considering that ideally 
I < 10% and CR < 20% . The authors observed that the 
models did not fit the flight data as well in forward flight 
with these parameters set to zero, so the parameters were 
retained in the model structure despite slightly degraded 
theoretical accuracy.

3.	 Coupling between pitch and heave becomes more preva-
lent in forward flight, where Mw and M�thr

 derivatives 
are identified with non-zero values. This is similar in 
behavior to a helicopter at forward flight.

4.	 Motor lag, lead and time delay are constant across both 
flight conditions.

Fig. 3   Identified mixer fre-
quency response for �motor,1∕�yaw
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5 � RMAC models

Stability derivatives were estimated by perturbing each 
of the dynamic states (including inflow states) from an 
equilibrium value, and numerically estimating the deriva-
tive using a centered difference formula. The estimated 
values of the stability derivatives are tabulated in Table 3. 
There are no motor dynamics included explicitly in the 
RMAC model, these are added as simple first-order filter-
ing functions based on the system identification results. 
Parameters not shown below are near zero. The time delay 
as identified in system identification is also included as 
a filter on the input.

6 � Validation against flight data

The fidelity of both the system identification and linearized 
RMAC models were carefully evaluated against flight data 
in the frequency and time domains. Validation was per-
formed at hover and forward flight. The results for both 
system ID and RMAC were overlaid to provide insight to 
the predictive accuracy of each model, and highlight their 
relative abilities to simulate the measured flight dynamics.

Table 2   SystemID stability and control derivatives

Linear model elements Stability derivatives

Hover 5 m/s

Value CR (%) I (%) Value CR (%) I (%)

Xu (1/s) − 0.221 – – − 0.202 11.06 2.61
Yv (1/s) − 0.221 – – − 0.287 12.41 5.69
Zw (1/s) − 0.338 21.1 10.3 − 0.537 8.28 3.12
Lv (rad/(m⋅s)) − 4.01 5.21 1.88 − 3.18 10.4 2.96
Lp (1/s) 0 – – − 0.895 30.96 13.0
Mu (rad/(m⋅s)) 4.01 5.21 1.88 2.05 22.12 1.97
Mq (1/s) 0 – – − 0.357 41.4 21.09
Mw (rad/(m⋅s)) 0 – – − 0.305 17.64 0.981
Nr (1/s) 0 – – − 0.510 4.04 1.97
�lag (1/s) 15 5.16 2.07 15 – –
u
0
 (m/s) 0 – – 5 – –

w
0
 (m/s) 0 – – − 0.5 – –

�
0
 (deg) 0 – – − 6 – –

Control derivatives

Value CR (%) I (%) Value CR (%) I (%)

Z�thr 

(
m∕s2

%∕100

)
− 39.4 2.29 1.35 − 39.5 2.9 1.03

L�lat 

(
rad∕s2

%∕100

)
145 2.93 2.11 141 2.72 1.23

M�lon
 

(
rad∕s2

%∕100

)
165 3.78 1.21 156 2.06 0.981

M�thr
 

(
rad∕s2

%∕100

)
0 – – − 5.51 8.70 2.15

N�lat
 

(
rad∕s2

%∕100

)
0 – – − 3.62 4.81 2.4

N′
�yaw

 

(
rad∕s2

%∕100

)
31.2 9.68 1.51 30.3 4.04 1.97

N�yaw
 

(
rad∕s2

%∕100

)
− 22.9 6.03 0.914 − 19.2 - -

� (s) 0.02 9.43 4.71 0.02 - -
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6.1 � Frequency domain cost functions

Frequency domain validation of the models is performed 
qualitatively with visual overlay of the models against flight 
data, and quantitatively with a cost function. The cost func-
tion is calculated by a weighted sum of time and frequency 
domain errors [15]:

where |T| and ∠T  are flight frequency response magnitude 
(dB) and phase (deg), |T̂c| and ∠T̂c are the model frequency 
response magnitude (dB) and phase (deg). Magnitude and 
phase error weightings are Wg = 1 and Wp = 0.01745 . The 
coherence ( � ) weighting factors the most accurate (highest 
coherence) data more heavily in the cost function, where 
W� = 2.5(1 − e� )2.

An individual cost function Ji is calculated for each of 
i frequency responses that are included in the parametric 
model identification. A cost Ji < 50 indicates a very accurate 
model for that response, and a cost of Ji < 100 is consid-
ered an acceptable level of fidelity. The average cost over 
all frequency responses is used as a metric of overall model 
fidelity, where Jave < 100 is recommended:

The cost functions are evaluated for both system ID and 
RMAC models, as shown in Table 4. The table shows that 

(13)
Ji =

20

n𝜔

𝜔n𝜔∑
𝜔1

W𝛾

[
Wg(|T̂c(𝜔)| − |T(𝜔)|)2 +Wp

(
∠T̂c(𝜔)

− ∠T(𝜔)
)2]

(14)Jave =
1

nTF

nTF∑
i=1

Ji

system ID models are in the excellent range for the most 
part, as expected considering they are extracted from flight 
data. Although the RMAC costs are significantly higher 
for the full frequency range, Table 4 shows that the RMAC 
models are near the range of Jave ≈ 100 if the low frequency 
( 𝜔 < 5 rad/s) portion of the response is not used in the cost 
function calculation ( �min = 5 ). This indicates that the phys-
ics-based models are accurate in the frequency range, where 
the aircraft responds, such as a first order system and the low 
frequency unstable oscillatory modes are attenuated.

The frequency response validation plots in Figs. 4, 5, 6, 
7, 8, 9, 10 and 11 show the flight data, system identifica-
tion models and RMAC models. These results clearly illus-
trate that the system identification models have an excel-
lent fit, and that RMAC predicts the behavior well for most 
responses at 𝜔 > 5 rad/s for both hover and forward flight. 
This can also be seen in the eigenvalues shown in Table 5 
for hover and Table 6 for forward flight. At these higher 
frequencies, the unstable oscillatory modes has attenuated 
and the 1st order modes as well as control power dominate 
the response, which RMAC predicts with good accuracy. 

Although the RMAC model does not well predict low 
frequency behavior, it does provide an acceptable fit in the 
frequency range that is most important for flight control. For 
control system design, the model should be accurate over the 
range of 1

3
𝜔c < 𝜔 < 3𝜔c . To determine the expected crosso-

ver frequency of the hexacopter, Froude scaling relative to 
a representative full scale aircraft, the UH-60, is used. For 
the UH-60, a reasonable crossover is 3 rad/s, and the scale 
factor is N =

Dhub−to−hub

DUH−60

= 29.8 , so that the hexacopter scale 
crossover frequency is �c = 3

√
N = 16.4 rad/s. This indi-

cates that the RMAC model (which has acceptable accuracy 
in the range of 5 < 𝜔 < 50 rad/s) would be sufficient for 

Table 3   RMAC-predicted 
stability and control derivatives

Stability derivatives Control derivatives

Linear model element Hover 5 m/s Linear model element Hover 5 m/s

Xu (1/s) − 0.061 − 0.35
Z�lon 

(
m∕s2

%∕100

)
0 0

Yv (1/s) − 0.061 − 0.20
Z�thr 

(
m∕s2

%∕100

)
− 47.1 − 45.7

Yp (m/(rad⋅s)) 0 − 0.5
L�lat 

(
m∕s2

%∕100

)
146 141

Zw (1/s) − 0.93 − 1.28
L�yaw 

(
m∕s2

%∕100

)
0 − 4.66

Lv (rad/(m⋅s)) − 1.62 − 1.29
M�lon

 

(
m∕s2

%∕100

)
137 133

Lr (1/s) 0 0.76
M�thr

 

(
m∕s2

%∕100

)
0 4.34

Mu (rad/(m⋅s)) 1.62 0.83
N�lat

 

(
m∕s2

%∕100

)
0 − 0.99

Nr (1/s) − 0.16 − 0.14 � (s) 0.02 0.02
�lag (rad/s) 15 15 �lead (rad/s) 5.1 5.1
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Table 4   Frequency domain model validation costs (J) for hover and forward flight

Hover

Frequency
Response

Frequency 
Range (rad/s)
�min − �max

Cost, J

System ID RMAC RMAC with
�min = 5

ax∕�lon 0.6–22 50.4 190 143
u̇∕𝛿lon 0.6–30 86.2 535 196
q∕�lon 0.6–50 58.9 422 136
ay∕�lat 0.3–25 59.7 177 108
v̇∕𝛿lat 0.5–30 79.9 689 91.5
p∕�lat 0.3–50 52.0 524 90.8
r∕�yaw 1.5–20 25.1 34.8 30.8
ẇ∕𝛿thr 0.6–25 13.1 68 82.4
Jave 52.2 330 110

5 m/s

Frequency 
Range (rad/s)
�min − �max

Cost, J

System ID RMAC RMAC with
�min = 5

ax∕�lon 9–35 96.4 270 270
u̇∕𝛿lon 5–30 49.1 203 203
q∕�lon 4–50 63.0 148 139
ẇ∕𝛿lon 5–30 52.9 232 232
ay∕�lat 0.8–25 49.6 227 102
v̇∕𝛿lat 1.1–20 43.9 204 104
p∕�lat 4–35 34.7 135 123
r∕�yaw 1–12 25.8 109 56.4
az∕�thr 0.7–22 17.4 94.4 66.3
ẇ∕𝛿thr 0.4–12 47.0 551 82.1
Jave 48.0 217 127

Fig. 4   Hover validation for 
longitudinal velocity rate (m/s2 ) 
and pitch rate (rad/s) to longitu-
dinal input (%/100)
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Fig. 5   Hover validation for 
longitudinal acceleration (m/s2 ) 
to longitudinal input (%/100) 
and vertical velocity rate (m/s2 ) 
to throttle input (%/100)

Fig. 6   Hover validation for 
lateral velocity rate (m/s2 ) and 
roll rate (rad/s) to lateral input 
(%/100)

Fig. 7   Hover validation for 
lateral acceleration (m/s2 ) to lat-
eral input (%/100) and yaw rate 
(m/s2 ) to pedal input (%/100)
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Fig. 8   Validation at 5m/s for 
longitudinal acceleration (m/s2 ) 
and pitch rate (rad/s) to longitu-
dinal input (%/100)

Fig. 9   Validation at 5 m/s for 
vertical acceleration (m/s2 ) and 
vertical velocity rate (m/s2 ) to 
throttle input (%/100)

Fig. 10   Validation at 5 m/s for 
lateral velocity rate (m/s2 ) and 
roll rate (rad/s) to lateral input 
(%/100)
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control system design, although building in additional stabil-
ity margin would be prudent given the elevated model cost. 
Clearly, a system identification model will provide less 
uncertainty in the control system design, and allow for a 
more optimal performing control system with less overde-
sign. However, in the case, where system identification mod-
els are not available or practical, such as for first-flight con-
trol system gain tuning, evaluation of notional designs prior 
to construction, or for preliminary design studies–these 
results indicate that a physics-based model such as RMAC 
can provide an acceptable prediction of the behavior.

7 � Time domain validation

Time domain verification of system identification models is 
an important last step to validating a system identified model 
that was developed in the frequency domain [15]. In time 
domain verification it is critical to test the robustness of the 
model against a different data set using a different input, to 
ensure that the system ID model is not overly tuned to the 
data used to generate the frequency responses from which 
the model was fit. Robustness to input type is a key indicator 
that the models represent the physics, as opposed to being 
a generic curve fit of the data. For RMAC, time domain 
verification provides important insights on the predictive 
capability of the model that are difficult to visualize in the 
frequency domain. The time domain verification costs are 
shown in Table 7, using the equation:

(15)Jrms =

√√√√ 1

ntno

nt∑
i=1

(ydata − y)TW(ydata − y)

Fig. 11   Validation at 5 m/s for 
lateral acceleration (m/s2 ) to lat-
eral input (%/100) and yaw rate 
(m/s2 ) to pedal input (%/100)

Table 5   Eigenvalues at hover for system ID model and RMAC model

System ID RMAC

Frequency
(rad/s)

Damping
Ratio

Frequency
(rad/s)

Damping
Ratio

Roll mode (1st 
Order)

3.49 1 3.71 1

Pitch mode (1st 
Order)

3.49 1 3.71 1

Yaw mode (1st 
Order)

0 1 0.138 1

Pitch oscillating 
mode

3.35 − 0.48 2.55 − 0.34

Roll oscillating 
mode

3.35 − 0.48 2.55 − 0.34

Heave mode (1st 
Order)

0.338 1 0.731 1

Table 6   Eigenvalues at 5 m/s for system ID model and RMAC model

System ID RMAC

Frequency
(rad/s)

Damping
Ratio

Frequency
(rad/s)

Damping
Ratio

Roll mode (1st 
order)

3.75 1 5.26 1

Pitch mode (1st 
order)

2.72 1 4.01 1

Yaw mode (1st 
order)

0.51 1 0.13 1

Pitch oscillating 
mode

2.55 -0.425 1.27 -0.545

Roll oscillating 
mode

2.88 -0.445 2.02 -0.281

Heave mode (1st 
Order)

0.587 1 0.589 1
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The desired time domain cost for full-scale vehicles has been 
well-vetted in Ref. [15], which states that excellent predic-
tive accuracy is Jrms = 1 , although 1 < Jrms < 2 is still con-
sidered acceptable. For this smaller vehicle, Froude scaling 
relative to the UH-60 ( N =

Dhub−to−hub

DUH−60

= 29.8 ) was imple-
mented to scale the costs. After scaling, it was determined 

that Jrms < 5.5 corresponds to an excellent prediction, but a 
range from 5.5 < Jrms < 11 was acceptable.

A normalized cost function, the Theil Inequality Coef-
ficient (TIC) does not need to be scaled, and is given by

Table 7   Time domain 
verification costs for system ID 
and RMAC models at hover and 
5 m/s

System ID RMAC

Hover 5 m/s Hover 5 m/s

Jrms TIC Jrms TIC Jrms TIC Jrms TIC

LAT 1.9 5.3% 2.20 6.9% 2.5 6.6% 3.52 10%
LON 1.5 4.1% 3.12 9.3% 2.8 7.2% 4.29 12%
YAW​ 0.95 5.2% 2.6 15.8% 1.12 6.4% 3.4 21%
THRUST 0.53 23% 1.67 35% 0.56 24% 8.93 71%

Fig. 12   Hover pitch input time 
domain verification

Fig. 13   Hover roll input time 
domain verification
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Fig. 14   Hover heave input 
(left) and yaw input (right) time 
domain verification

Fig. 15   Forward flight (5 m/s) 
pitch input time domain verifi-
cation

Fig. 16   Forward flight (5 m/s) 
roll input time domain verifica-
tion
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This cost function can be considered as a percent error when 
multiplied by 100. For good predictive accuracy, it is recom-
mended in Ref. [15] that TIC < 35%.

The time domain cost functions for the system ID and 
RMAC models are shown in Table 7. The results indicate 
that the system ID model has excellent predictive accuracy, 
because its Jrms and TIC costs are well below the guidelines 
for both hover and forward flight. The excellent prediction 
of the system identification model can be seen in Figs. 12, 
13 and 14 for hover, and in Figs. 15, 16, 17 and 18 for the 5 
m/s forward flight case. In most of these plots, the system 
ID model is nearly indistinguishable from the flight data. 
The RMAC models have Jrms and TIC costs that are within 

(16)TIC =
Jrms�

1

ntno

∑nt
i=1

yTWy +
�

1

ntno

∑nt
i=1

yT
data

Wydata

the guidelines, indicating good predictive accuracy, for both 
hover and forward flight, in all responses except for the for-
ward flight thrust response. As shown in Figs. 12, 13 and 
14, for hover, the prediction of the RMAC model is also 
quite good with some magnitude overshoot and phase differ-
ences relative to flight data, as also shown in the frequency 
domain. For forward flight, in Figs. 15 and 16 , the pitch and 
roll RMAC responses have good predictive accuracy, with 
slightly larger overshoot relative the flight data than seen in 
hover. The vertical velocity response during the pitch dou-
blet in Fig. 15 is somewhat over predicted but the response is 
small and as such the costs are still within the recommended 
range. The RMAC yaw response has the right shape and 
magnitude of response, as shown in Fig. 17, but has some 
phasing mismatch, as also seen in the frequency domain. 
The yaw-to-roll coupling appears to be well predicted by 
RMAC in forward flight. The thrust response has reasonable 

Fig. 17   Forward flight (5 m/s) 
yaw input time domain verifica-
tion

Fig. 18   Forward flight (5 
m/s) heave input time domain 
verification
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on-axis prediction of ẇ and az (although with some over-
shoot), as shown in Fig. 18, but the off-axis coupling of the 
pitch rate q and attitude � is significantly over-predicted.        

8 � Discussion of dynamics for multirotor 
vehicles

The time and frequency domain results overall indicate 
that the RMAC provides acceptable accuracy for prelimi-
nary control system design–indicating that a blade element 
model with a 10 state Peters-He inflow, combined with 
system identified motor dynamics has reasonably good pre-
dictive accuracy in the frequency range of interest at hover 
and forward flight. Although there are areas for improve-
ment, many of the areas, where dynamic response mismatch 
occurs would be suppressed by a control system–such as 
low frequency responses and off-axis coupling. If relying 
on this model for control system design, it would be wise 
to design additional robustness into the control system by 
way of extra gain and phase margin to account for these 
discrepancies. Still, the match is reasonably good and in the 
range of acceptable but not excellent fit–this is really as good 
as you are likely to get with a physics-based model that has 
not been tuned with empirical corrections to better match 
flight data. System identification models can play a key role 
in updating physics-based models and provide guidance for 
model improvement. Key lessons learned by comparison of 
these two methods for modeling the dynamics of multirotor 
vehicles are presented in the following sub-sections of this 
paper. Several elements were found to be critical in achiev-
ing good model fidelity relative to the flight data: 

1.	 Speed and rate damping derivatives

2.	 Longitudinal and heave coupling
3.	 Mass moment of inertia
4.	 Motor dynamics
5.	 Fuselage lrag
6.	 Rotor modeling

8.1 � Speed and rate damping derivatives

The RMAC blade element model over-predicts the magni-
tude and phase of the on-axis p∕�lat and q∕�lon responses 
for frequencies below 5 rad/s, largely stemming from mis-
match of the oscillatory mode frequencies as shown by the 
eigenvalues (Table 5) and seen in the frequency responses 
of Figs. 4 and 6 . The root cause of the frequency mismatch 
is related to over-prediction of angular rate damping ( Lp and 
Mq ), with simultaneous under-prediction of the speed damp-
ing ( Lv and Mu ). By directly modifying the linear RMAC 
model, a significant improvement can be seen by reduc-
ing rate damping by a factor of two while simultaneously 
increasing the speed damping by a factor of two, as shown 
in Fig. 19. These derivatives are all influenced by variations 
of inflow over the rotor disk as well as differences in inflow 
between rotors which create relative pitch/roll moments. As 
such, the discrepancy could possibly be due to interference 
effects, which are not included in the RMAC model, but the 
root cause is still an area of investigation. 

8.2 � Longitudinal/heave coupling

A key area for future improvement of the RMAC model is 
related to the pitch to heave coupling in forward flight. The 
mismatch is very clear from the time verification, as shown 
in Fig. 18. This overprediction of coupling also creates a mis-
match at frequencies < 5 rad/s in the ẇ∕𝛿thr frequency domain 

Fig. 19   Direct adjustments fo 
linearized hover RMAC model 
to better capture flight response
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response, as shown in Fig. 9. The low frequency ẇ∕𝛿thr is 
largely dominated by the kinematic coupling with the pitch 
response via the u0∕q term, and so is affected by the pitch/
heave coupling. By eliminating the Mw term from the linear 
RMAC model, both the frequency and time domain responses 
better predict the flight behavior, as shown in Figs. 20 and 21. 
The reason for this mismatch is likely a related phenomenon to 
the mismatch of the speed damping derivative Mu , discussed 
in the previous section. It should be noted that the coupling 
control derivative M�thr

 is retained unaltered in this analysis. 

8.3 � Mass moment of inertia

A key element in accurate representation of any dynamics 
system, and a well-known source of uncertainty, is the mass 
moment of inertia. For system identification, the moment of 
inertia is identified as part of the lumped stability or control 
derivative. For example, the Mu term is identified as a lumped 
term that includes the inertia and the aerodynamic effect in 
pitching moment due to longitudinal velocity:

As such, the inertia is fully correlated with the aerodynamic 
term and cannot be extracted via system identification.

(17)Mu =
1

Iyy

dM

du

Fig. 20   Adjusted pitch/heave coupling in 5 m/s linearized RMAC 
model

Fig. 21   Direct adjustments to 
pitch/heave coupling in the 
forward flight linearized RMAC 
model

Table 8   Mass moment of inertia 
for the university of Portland 
hexacopter

Element Modeled as Mass Ixx Iyy Izz

Center plate with sen-
sors, and pixhawk

Thin disk with diameter of 16.5cm 830g 0.00565 0.00565 0.0113

Arms (6) Point Masses at 17.8cm from center 342g 0.0054 0.0054 0.0108
Motors/Blades (6) Point masses at 27.5cm from center 384g 0.0143 0.0143 0.0285
Total Sum of elements 1556g 0.0254 0.0254 0.0506
Swing test Result from Swing Test 0.0266 0.0266 0.0498
% Difference − 4.5% − 4.5% 1.6%
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In the case of the multirotor vehicle, the geometry seems 
simple enough that approximations based on simplified 
geometry of the aircraft would be sufficiently close to the 
true. In practice, we found that simple approximations 
resulted in inertias that were within 5% of the swing test 
results, as shown in Table 8. Still, the average cost func-
tion of the physics-based model indicates that these small 
differences in inertia affect the overall model quality. The 
change in average cost shown in Table 9 is in the range con-
sidered significant, degrading the cost by �J = 9 for hover 
and �J = 15 for forward flight when using the approximate 
inertia. Clearly, to achieve excellent model accuracy, the 
inertias need to be very accurate and swing test results are 
warranted when practical.

8.4 � Motor dynamics

As described earlier in Eqs. 2 and 3 , motor dynamics are 
included in the system identification model structure. As 
shown for a quadcopter [17] and for an octocopter [18], the 
inclusion of the motor dynamics are critical to accurately 
capturing higher frequency magnitude and phase response of 
multirotor vehicles. The pitch, roll and heave inputs are sub-
ject to a motor lag, as shown for example in the p∕�lat model:

where p∕��
lat

 is the response with instantaneous thrust (no 
motor lag). A similar structure is used for the pitch and 
thrust inputs. The yaw response is a combination of differ-
ential motor torques on alternating rotors, which produces a 
lead–lag motor dynamic:

For the system ID model, these dynamics were identified 
as part of the model structure and it was determined that:

The RMAC physics-based model does not explicitly include 
these dynamics, which, if not corrected, results in an over-
prediction of phase at 𝜔 > 10 rad/s. Considering that cross-
over frequency is expected to be in the range of � ≈ 15 rad/s, 
this phase loss is exceedingly important for potential control 
system design. Overprediction of the phase will lead to an 
overprediction of phase margin, a dangerous situation that 
could result in flight instability. As such, the system identi-
fied first order motor dynamics were included in the RMAC 
physics-based model.

Modeling these motors explicitly would require knowl-
edge of the electronic speed controller, motor and rotor 
inertia. These dynamics are most easily determined via 
system identification, an excellent example of system 
identification supplementing the physics-based model 
to improve its fidelity. In fact, these dynamics could be 

(18)
p

�lat
=

(
p

��
lat

)(
�lag

s + �lag

)

(19)
r

�yaw
=

(
r

��
yaw

)(
�lag

�lead

)(
s + �lead

s + �lag

)

�lag = 15 rad/s

�lead = 5.1 rad/s

Table 9   Frequency domain average cost for RMAC with estimated 
inertia versus swing test

Flight condition Swing test 
inertia

Geometry 
inertia

Difference

Hover 108 117 9
5 m/s 127 142 15

Fig. 22   Effect of motor 
dynamics on hover frequency 
responses
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identified on a test stand as in [18] and then implemented 
prior to flight test to improve the physics-based model. 
Herein, we used the motor lag as identified in flight, 
because it was available.

As shown in Fig. 22, the inclusion of the motor dynam-
ics is critical for the physics-based and system identifica-
tion models. Both models tend to overpredict the gain and 
phase of the roll response at high frequency and under-
predict the gain of the yaw response at high frequency 
(gray lines in Fig. 22). The RMAC model also greatly 
overpredicts the phase of the yaw response at all frequen-
cies if motor dynamics are neglected. 

8.5 � Fuselage drag

Fuselage drag is a critical component of the dynamics 
of any VTOL aircraft, and multirotor aircraft are no 
exception. However, there are no first-principles models 
implemented in RMAC to estimate fuselage drag. There-
fore, approximations of the fuselage drag must be made, 
ideally based on flight data. In this study, the fuselage 
flat plate drag area (0.0762 m 2 ) was chosen such that 
5 m/s trimmed forward flight required approximately 6 
degrees of nose-down pitch attitude. The flat plate drag 
area directly influences the predicted values of stability 
derivatives Xu and Yv in forward flight. Figure 23 shows 
the pitch rate and longitudinal velocity rate responses to 
longitudinal input for varying levels of fuselage drag, 
ranging from zero to 100% increased drag. The amount 
fuselage drag does not significantly change the pitch rate 
responses, as expected, but the phase of the RMAC speed 
response u̇ would be significantly over predicted if fuse-
lage drag were ignored. 

8.6 � Rotor modeling

In early quadcopter work [26, 27], rotor thrust and torque 
were calculated using a simple formula, with both being 
proportional to the square of the rotor rotational speed, with 
proportionality constants extracted from static thrust tests 
on the rotors used:

(20)T = a�2

(21)Q = b�2

Fig. 23   Effect of fuselage 
drag on predicted longitudinal 
dynamics

Fig. 24   Effect of rotor model on longitudinal dynamics in hover
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All other rotor forces and moments are assumed to be 
zero. The proportionality constants for thrust and torque 
were used throughout the flight envelope, with absolutely 
no adjustments based on the motion of the rotor relative to 
the surrounding air. Naturally, this model predicts control 
derivatives well in hover, but does not capture any of the 
stability derivatives that are associated with rotor forces or 
moments, such as Mu and Lv . Consequently, it does not cap-
ture well any of the low frequency bare airframe dynamics 
in hover or forward flight. For example, Fig. 24 shows the 
aircraft pitch rate response to longitudinal stick input. At 
high frequency, the �2 model performs well, where the con-
trol derivative and motor dynamics (treated identically for 
�2 as it is for RMAC in general) are dominant. However, at 
low frequency, the �2 model dramatically overpredicts the 
magnitude of the pitch rate response, since it neglects the 
variation in inflow that occurs as the aircraft maneuvers.

9 � Application of model corrections 
to physics‑based model

The NATO Applied Vehicle Technology (AVT) 296 
Research Task Group has examined several methods of 
model correction for the improvement of the fidelity of 
physics-based models using flight test data. The methods 
explored in the AVT-296 report [28] include: 

1.	 Gain and time delay corrections
2.	 “Black-Box” input and output filters
3.	 Force and moment increments based on stability deriva-

tives
4.	 Reduced order models and physics-based corrections
5.	 Model parameter adjustment for physics-based simula-

tion
6.	 Parameter identification of key simulation constraints
7.	 Stitched simulations from point id models and trim data

Of these methods, both (1) and (2) have been applied to 
RMAC in earlier sections. Specifically, a time-delay correc-
tion from the identified data and an input filter representing 
the motor dynamics were added to the RMAC model. In this 

section, method (3), the force and moment increment will be 
applied to the RMAC model, in addition to the time delay 
and input filter corrections.

To correct the RMAC model with a force and moment 
increment using the identified hexacopter model, the first 
step is to identify which derivatives are important to get 
right, based on the sensitivity of the cost functions (Table 4) 
to changes in the individual stability and control deriva-
tives. The corrections are made based on the model identi-
fied in hover, and the stability/control derivatives chosen for 
updates are summarized in Table 10.

For the selected derivatives, an additional term is added to 
the equations of motion (Eqs. 7 and 8 ) to create Eqs. 22 
and 23:

where �X , �Y  , �Z  , �L , �M and �N  are the force and 
moment increments, and are given by

The net effect of this change on the predicted stability and 
control derivatives are given by

(22)
⎡⎢⎢⎣

u̇

v̇

ẇ

⎤⎥⎥⎦
= RT

⎡⎢⎢⎣

0

0

g

⎤⎥⎥⎦
+

1

m

�
�fus +

6�
i=1

�i +

⎡⎢⎢⎣

𝛥X

𝛥Y

𝛥Z

⎤⎥⎥⎦

�
− � × �

(23)

⎡⎢⎢⎣

ṗ

q̇

ṙ

⎤
⎥⎥⎦
= �

−1

�
�D × �fus +

6�
i=1

(�i + �
�
× Fi) +

⎡
⎢⎢⎣

𝛥L

𝛥M

𝛥N

⎤⎥⎥⎦

�
− � × ��

(24)

�X = (Xu,ID − Xu,RMAC)u �Y = (Yv,ID − Yv,RMAC)v

�Z = (Zw,ID − Zw,RMAC)w �N = 0

�L = (Lv,ID − Lv,RMAC)v + (Lp,ID − Lp,RMAC)p

+ (L�lat ,ID − L�lat ,RMAC)�lat

�M = (Mu,ID −Mu,RMAC)u + (Mq,ID −Mq,RMAC)q

+ (M�lon,ID
−M�lon,RMAC)�lon

Table 10   Selected derivatives for force and moment increment 
updates

Axis

Longitudinal Lateral Heave Yaw

Xu Yv Zw None
Mu Lv

Mq Lp

M�lon
L�lat

Table 11   Frequency domain 
model validation costs (J) for 
corrected hover and forward 
flight models

Frequency 
response

Hover 5 m/s

ax∕�lon 100.3 92.3
u̇∕𝛿lon 85.7 50.7
q∕�lon 66.6 35.6
ay∕�lat 129 68.7
v̇∕𝛿lat 71.9 33.8
p∕�lat 60.1 31.4
r∕�yaw 31.5 94.4
az∕�thr 39.8 40.2
ẇ∕𝛿thr - 242
Jave 73.1 76.56
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where only the derivatives in Table 10 are affected. Natu-
rally, if ARMAC and BRMAC are evaluated in hover, the selected 
stability derivatives will match the identified model, bring-
ing the frequency responses much closer to the identified 
models, as shown by the reduced costs listed in Table 11. 
The costs are not quite identical to the identified model, as 
only a subset of stability derivatives have been updated.

When the same correction is applied to the forward 
flight model, all of the model costs are reduced dramati-
cally. In fact, all of the on-axis model costs are within the 
guideline of J < 100 , except for ẇ∕𝛿thr . This frequency 
response is still largely incorrect due to the errors in Mw , 
as previously described. This stability derivative was not 
selected for correction, as it is equal to zero in hover.

If Eq. 25 is applied about 5m/s instead of hover, then 
even the coupled responses would be accurately predicted. 
However, this would also result in a pitch-heave coupling 
in hover, which is not observed in the flight data. As such, 
a multi-point correction may be necessary to accurately 
capture the behavior in both hover and forward flight.

10 � Conclusions

This paper performed a detailed evaluation of the predic-
tive capabilities of system identification using CIFERⓇ and 
a physics-based nonlinear blade-element model with 10 
state Peters-He inflow as implemented in the Rensselaer 
Multicopter Analysis Code (RMAC). The models were 
validated against flight data in both the time and frequency 
domains for a 55 cm diameter hexacopter at hover and 
forward flight (5 m/s). Model corrections using the force 
and moment increments from the identified model were 
applied to the RMAC model. Key conclusions from this 
work are given below.

System identification model

1.	 Frequency domain system identification models are 
highly accurate at both hover and forward flight for 
multirotor vehicles, resulting models that produce nearly 
identical responses as flight.

2.	 Speed damping derivatives Lv and Mu , which largely 
dominate the roll and pitch dynamics at hover, are some-
what reduced at forward flight, whereas pitch and roll 
damping ( Lp and Mq ) play a larger role in forward flight

3.	 Coupling between pitch and heave becomes more preva-
lent in forward flight, where M�thr

 and Mw derivatives are 
identified with non-zero values.

(25)
ACorrected = ARMAC + (Ahover,ID − Ahover,RMAC)

BCorrected = BRMAC + (Bhover,ID − Bhover,RMAC)

4.	 Motor lag and time delay are constant across both flight 
conditions and are critical for accurate system identifica-
tion.

Physics-based blade element RMAC model

5.	 The inertia of the vehicle must be very accurate for a 
good prediction of the flight response. Mass moment of 
inertia determined by swing test of the hexacopter pro-
vided significant improvement in the RMAC prediction.

6.	 The motor lag and time delay dynamics are important 
elements of the high frequency phase response of the 
vehicle, and must be accounted for the physics-based 
model. An empirical first-order model from system iden-
tification results was found sufficient to model these key 
dynamics.

7.	 RMAC model under-predicts the speed derivatives ( Lv , 
Mu ) and over-predicts the rate damping derivatives ( Lp , 
Mq ), resulting in poor predictive accuracy at low fre-
quency ( 𝜔 < 5 ). In addition, in forward flight, the pitch 
response due to coupling with heave is significantly 
overpredicted.

8.	 RMAC model has sufficient accuracy in the frequency 
range of interest for flight control to support preliminary 
design.

Model corrections

	 9.	 Applying the force and moment increment to a subset 
of stability derivatives in hover reduced the model cost 
dramatically in hover.

	10.	 Applying the same increment identified in hover to the 
forward flight model dramatically reduced the model 
cost for most of the on-axis frequency responses. The 
sole exception was the heave response, which is influ-
enced by the overpredicted pitch-heave coupling. This 
was not corrected, as the coupling derivatives are zero 
in hover.

	11.	 To accurately capture the behavior in hover and for-
ward flight, a multi-point correction method may be 
necessary.
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