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ABSTRACT
In this paper, an assume-guarantee reasoning approach is developed for obstacle avoidance in unmanned aerial vehicles
(UAVs) in the presence of multiple obstacles in an obstacle field. This construct assumes certain properties of the
environment and the vehicle to guarantee the safety and performance of the UAV (in this case, executing safe collision-
avoidance trajectories). In the presence of a single obstacle, the assumptions on the environment and the vehicle
parameters are constructed such that the UAV can plan a safe trajectory once the obstacle is detected. The approach to
guaranteeing safety in the presence of multiple obstacles requires enforcing additional assumptions which is done by
constructing a region of influence (RoI) around each obstacle, whose size depends on the environment and the vehicle
parameters. The safe combinations of these parameters (codified as contracts) are developed such that the RoIs in
the obstacle field do not intersect. The aforementioned approach is then used to decompose the general multiple-
obstacle avoidance problem into a sequential single-obstacle avoidance problem by constructing an induction-based
algorithm framework. The proposed methodology is validated by an illustrative example with minimum obstacle
detection range, maximum allowed cruise velocity, maximum allowable agility as vehicle properties; and maximum
obstacle size and minimum obstacle separation as environmental properties. Contract generation for specific scenarios
and implementation of sequential avoidance on a 6-DoF quadcopter simulation are demonstrated. Finally, the effect
of tracking error on the contract-based framework is discussed, along with a mechanism to incorporate this source of
uncertainty into the contract.

NOTATION

Dod - obstacle detection range
Dsep - minimum obstacle separation in an obstacle field
etr - tracking error between the actual position and com-
manded position
Etr - maximum tracking error in position
E - feasible set of maximum position tracking error
F - continuous chains of integrators for the differentially flat
dynamics
fs - 6-DoF dynamics
G - continuous input matrices for the differentially flat
dynamics
G - safe region infront of the obstacle
Ḡ - unsafe region infront of the obstacle
g - gravity
ĝ - ‘collision set boundary’ is defined as ĝ(x,y) = 0
J - cost function
K - rotational inertia in ψ

m - mass of the UAV
Ō - set of the states of obstacles
Oi - state of the obstacle of interest ‘i’
p - 6-DoF states of the UAV (position, attitude and their
derivatives)
p0 - initial state of the UAV
PD - set of allowable final states of the UAV
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path - x,y values of a trajectory
q - states of UAV in the differentially flat dynamics
S - set representing the ‘region of influence’
T - total available thrust
t0/t f - initial/final times
U - feasible input set of the 6-DoF model
Ū - feasible input set of the differentially flat model
u - inputs to the 6-DoF model
ū - inputs to the differentially flat model
uψ - yaw moment
V - feasible set of velocity tracking error
V̂ - actual velocity of the UAV while tracking
Vcruise - maximum cruise velocity
vel - velocity vectors along a trajectory
W - feasible input set of simplified differentially flat model
w - continuous simplified synthetic input
X - state of the simplified 2-D dynamics
X - state space of the simplified 2-D dynamics
xpob - x-coordinate of the post-obstacle border
yl1/yl2 - lane parameters
x,y,z - planned position of the UAV in the inertial frame
x̂, ŷ, ẑ - actual UAV position while tracking
φ/θ/ψ - roll/pitch/yaw angles
φmax/θmax - maximum roll/pitch angles
δVx - control tracking error of velocity in x-direction
δVy - control tracking error of velocity in y-direction
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INTRODUCTION

With increasing use of unmanned aerial vehicles (UAVs) in
military and civilian applications such as search and rescue,
mapping, and exploration; it is important that UAV navi-
gation is fully autonomous to reduce human errors. Since
many applications involve traversing through environments
cluttered with obstacles, developing a general framework for
path-planning and control strategies (of an autonomous UAV)
is challenging. Typically, the approaches for path-planning as-
sume that the information regarding the environment (map) is
known. For example, in (Ref. 1) the authors constructed an ar-
tificial potential field generated by the target (attracts) and the
obstacles (repels) to achieve a feasible trajectory. Similarly,
in approach (Ref. 2) the authors used Voronoi diagrams and
Djikstra’s algorithm to produce continuous curvature trajecto-
ries. Since information of the map might not be completely
known a priori, the authors in (Ref. 3) assumed a probabil-
ity map of obstacles and used the Bellman Ford algorithm to
plan trajectories. When no information of the environment is
provided, purely data driven approaches are typically used as
shown in (Ref. 4), where the UAV is trained by an expert be-
fore hand. A major drawback of the above approaches is that
they do not incorporate the dynamics of the UAV while plan-
ning, which might lead to collision while tracking the planned
trajectory. The papers (Ref. 5) and (Ref. 6) plan the trajec-
tory by incorporating vehicle dynamics but such approaches
are generally limited to scenarios where the environment is
known.

Even when obstacle information is explicitly given, it is cru-
cial to be able to guarantee the existence of a safe trajec-
tory before planning for time-efficient trajectories. Some ap-
proaches for guaranteeing safety involve computing the Back-
ward Reachable Set (BRS) for a single obstacle, as discussed
in (Ref. 7). This BRS is defined such that when the UAV en-
ters this set, it will inevitably collide with the obstacle. Thus,
as long as the UAV is outside the BRS, collision avoidance
is possible. Although this framework can be applied inde-
pendently on multiple obstacles, safety can not be guaranteed
since avoiding one obstacle might lead to collision with an-
other. Other approaches have focused on computing the BRS
for multiple obstacles by solving the Hamilton-Jacobi-Isaac’s
equation (HJI) as shown in (Ref. 8). This approach can be
computationally expensive and unusable especially when the
exact obstacle sizes and locations are unknown.

In order to guarantee the existence of safe trajectories for
path planning without explicit knowledge of the environment,
this paper exploits assume-guarantee reasoning, wherein the
overall performance of the system is guaranteed if individual
subsystems guarantee certain properties of their own while
assuming certain properties of other subsystems. Assume-
guarantee reasoning has been used to obtain optimal con-
trol policy for traffic signals in (Ref. 9) and also for self-
driving cars in (Ref. 10), where each car guarantees to fol-
low an action structure while assuming similar guarantees
from other vehicles. In this paper, we leverage this assume-
guarantee reasoning for multiple-obstacle collision avoidance

for UAVs. As an illustrative example for this paper, guar-
antees for safe obstacle avoidance are constructed by deter-
mining relationships between the maximum cruise velocity,
agility of the UAV (available thrust, maximum allowed roll
and pitch), controller performance (tracking error), naviga-
tion subsystem performance (obstacle detection range), and
the nature of environment (e.g.,, maximum obstacle size, min-
imum separation distance between obstacles in the obstacle
field).

Figure 1. General scenario for multiple obstacle avoidance

PROBLEM STATEMENT

Consider the scenario shown in Fig. 1, where a cruising UAV
must fly through an obstacle field (with unknown obstacle lo-
cations a priori) to reach a target. The guarantee that UAV
can safely fly through this obstacle field is contingent on the
feasibility of the optimization problem in (1) as shown below

min
p(·),u(·)

J(p(·),u(·)), (1)

s.t. ṗ(t) = fs(p(t),u(t))
p(t0) = p0, p(t f ) ∈ PD

p(·) /∈ Ō, u ∈ U,

where p denotes the state, u denotes the control input, U is the
admissible set of inputs and Ō is the set of obstacles. Note that
the target (PD) is a set of permissible states or way-points be-
yond the obstacle field. However, confirming the existence of
a feasible trajectory is not trivial due to two primary reasons.
First, the non-linearity of the dynamics of the UAV (even with
a simplified model) significantly increases the complexity of
checking feasibility for all possible combinations of obsta-
cle locations. Second, the feasible set for obstacle avoidance
problem is in general non-convex. If we assume the obstacles
Oi themselves to be convex, the safe region is the complement
of the set Ō =O1∪O2∪ . . .On, which is typically non-convex,
resulting in weak or non-existent theoretical guarantees on the
feasibility. Thus, there is no mechanism to obtain the neces-
sary and sufficient conditions which determine the existence
of a feasible trajectory, a priori.

Guaranteeing Feasibility: In this paper, we first develop a
general framework (sufficient conditions) for guaranteeing
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the feasibility of the multiple obstacle path planning problem
(optimization) described in (1). The key idea explored here
is to guarantee this feasibility by enforcing assumptions on
the obstacles Oi, the initial and terminal states (p0 and PD),
the admissible control input set U as well as the dynamics
fs. For the scenario considered in this paper as shown in
Fig. 2, these assumptions translate to relationships between
the maximum cruise velocity Vcruise, obstacle detection
range Dod , maximum obstacle size Smax , minimum obstacle
separation Dsep, vehicle agility (maximum thrust, maximum
allowable roll and pitch) and maximum tracking error Etr.
The relationships between the above parameters such that (1)
is feasible are ‘contracts’, which are developed in the later
sections.

Sequential Planning for Multiple Obstacle Avoidance: If
the feasibility of the optimization problem (1) is guaranteed,
we propose a path-planning scheme for multiple obstacles,
wherein the UAV determines the nearest ‘obstacle of interest’
(at any given time) and avoids obstacles sequentially. Natu-
rally, this requires that the obstacles do not interfere with each
other. That is, during the course of avoiding one obstacle, the
UAV stays sufficiently far away from other obstacles, a con-
dition guaranteed by the construction of the contract.

Figure 2. Specific scenario for multiple obstacle avoidance

SOLUTION APPROACH: REGIONS OF
INFLUENCE FOR OBSTACLES

In this section, we first discuss the idea behind the guar-
anteeing safety for a UAV cruising in the presence of a
single obstacle and describe the limitations when the idea is
directly extended to the multiple obstacle scenario. We then
explore the key idea behind guaranteeing feasibility of the
optimization problem (1) and the algorithmic approach to
sequentially avoid multiple obstacles.

We first present the scenario where a UAV is cruising
towards its target in an unknown environment in the presence
of a single obstacle with a known maximum size. As
discussed in (Ref. 11), we enforce assumptions on the UAV
parameters and environmental parameters such that the
contract is satisfied. This contract is constructed numerically
by determining the unsafe combinations of these parameters

that lead to the infeasibility of optimization problem (1).
Instead of computing the infeasible combinations for all
possible scenarios, the approach in (Ref. 11) determines the
‘worst case’ scenario such that the feasible combinations
corresponding to the worst case scenario remain feasible for
all other scenarios. The worst case scenario in the presence
of a single obstacle assumes that the UAV is cruising head-on
towards the obstacle and that the obstacle is right outside the
UAV’s obstacle detection range. This approach is usually
computationally expensive since set of feasible positions
(region outside the obstacle) is non-convex, thereby, causing
the conventional gradient-based algorithms to be unreliable
while solving the optimization problem (1).

Key Idea for Multiple Obstacle Avoidance: In the multi-
ple obstacle scenario, the set of feasible positions is also non-
convex since the obstacle set (the union of convex obstacles)
is non-convex, which renders the numerical approach ineffec-
tive. Further, determining the ‘worst’ case scenario (for the
construction of contracts) is not straightforward since the ef-
fects of obstacles on the constraints in (1) are coupled. To
illustrate this, consider the case where the initial state of the
UAV is such that we can guarantee a safe trajectory in the
presence of a single obstacle O1. In a second scenario, let the
UAV have the same initial state as before and is such that we
can guarantee a safe trajectory in the presence of an obstacle
O2 (without O1). However, in the presence of both obstacles
O1 and O2, we cannot guarantee the existence of a safe tra-
jectory because trying to avoid one of the obstacle might lead
to collision with the other. Therefore, we now investigate the
conditions on the location/size of obstacles such that ‘nearby’
obstacles do not interfere with the safety guarantees on the
UAV while avoiding one obstacle.

(a) Safe (b) Unsafe

Figure 3. Schematic of the obstacles and their respective
Regions of Influence (top view)

We introduce the notion of a Region of Influence (RoI)
around the obstacles, as shown in Fig. 3, such that for any
state of the UAV outside or on the boundary of this region,
there exists a safe trajectory (that avoids collision with the
obstacle) that stays inside the region until the obstacle is com-
pletely avoided. If the RoIs of individual obstacles are non-
intersecting, we can isolate the effect of obstacles from each
other. This way, we can address the multiple obstacle avoid-
ance problem by breaking it down into a sequence of sub-
problems, each of which deals with avoiding a single obsta-
cle. If the RoI can be constructed such that the above state-
ments hold true, the feasibility of the optimization problem
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is guaranteed as long as the RoIs of obstacles do not inter-
sect with each other. In order to reduce conservativeness, the
RoI should be as tight (small) as possible, while retaining its
guarantee.

PRELIMINARIES

In this section, we briefly describe a rigid body dynamics UAV
model and derive the simplified dynamics used for trajectory
planning and contract generation. For a general 6-DoF quad-
copter model as described in (Ref. 12), the system states are
inertial position (North-East-Down frame), Euler angles, and
their respective derivatives. However, since the pitch (φ ) and
roll (θ ) are regulated 5−10 times faster than the other states
by the inner loop as discussed in (Ref. 12) and (Ref. 13), this
paper treats them as control inputs for trajectory planning in
the outer loop. The states for this model are position, veloc-
ity, yaw angle and yaw rate (p = [x ẋ y ẏ z ż ψ ψ̇ ]T ), while the
control inputs are thrust, roll and pitch angles and yawing mo-
ment (u = [T φ θ uψ ]

T ). The non-linear dynamics (as derived
in (Ref. 12)) can be expressed as ṗ = fs(p,u) and fs is such
that the relations in Eq. (2) are satisfied.

ẍ =− T
m (cosφ sinθ cosψ + sinφ sinψ);

ÿ =− T
m (cosφ sinθ sinψ− sinφ cosψ);

z̈ = g− T
m cosφ cosθ ;

ψ̈ = kuψ .

(2)

Converting this into its differentially flat form (Ref. 11), we
obtain an equivalent linear dynamics and the original inputs
as an explicit function of synthetic inputs as shown in Eq. (3)
and Eq. (4), where q, ū is the new state and synthetic control
input, respectively.

q̇ = Fq+Gū;

q = [x, ẋ,y, ẏ,z, ż,ψ, ψ̇]T ;

ū = [ẍ, ÿ, z̈, ψ̈]T ,

(3)

where F is a continuous chain of integrators and the endoge-
nous relations are,

φ = tan−1( −ẍsinψ+ÿcosψ√
(g−z̈)2+(ẍcosψ+ÿsinψ)2

);

θ =− tan−1( ẍcosψ+ÿsinψ

g−z̈ );

T = m
√

ẍ2 + ÿ2 +(g− z̈)2;

uψ = 1
k ψ̈.

(4)

The synthetic input ū must be chosen such that the constraints
on the original inputs are satisfied. To this end, the relation-
ships in Eq. (2) can be used to map the admissible set U for
the original input to the admissible set Ū for the synthetic
input, as shown in Fig. 4. Note that the equivalent linear
dynamics along with the admissible synthetic input set is an
exact transformation of the original system.

Simplified Model for Contract Generation: Although the
planned trajectories are typically for a 6-DoF rigid body
model of the UAV, developing guarantees on feasibility of (1)
can be done by simplifying the dynamics conservatively. This
has been done such that for any given initial state, trajectories
generated using the simplified dynamics are feasible for the
6-DoF dynamics. To simplify the dynamics, we first elimi-
nate the dependence on z by constraining Ū such that z̈ = 0,
which is justified since obstacles in this paper are assumed to
be pillar-like. Further simplifying by assuming ψ = 0 elim-
inates the dependence on the heading angle (ψ) leads to the
dynamics in Eq. (5) (double integrator chains) as shown

Ẋ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

X+


0 0
1 0
0 0
0 1

w, (5)

where X =
[
x ẋ y ẏ

]T ∈ X is the simplified state and
W =

[
ẍ ÿ

]T ∈W is the simplified synthetic control input.
Here, X and W are the state space and simplified synthetic
input set respectively. Substituting z̈ = 0 and ψ = 0 in Eq.
(2), we obtain the endogenous relationships between simpli-
fied synthetic input and the original input as shown in Eq. (6)
below.

ẍ =−g tanθ ,
ÿ = g tanφ secθ .

(6)

For box-constraints on roll and pitch angles (i.e. |φ | ≤ φmax
and |θ | ≤ θmax), the simplified synthetic input set is approxi-
mated to be an axis-aligned rectangle as shown in Fig. 4. The
feasible set of simplified synthetic input W can be defined as
shown in Eq. (7) below.

W=

{
(ẍ, ÿ)

∣∣∣∣ ẍ ∈ [−g tanθmax,g tanθmax],

ÿ ∈ [−g tanφmax secθmax,g tanφmax secθmax]

}
(7)

Figure 4. Determining the simplified synthetic input set

Although Eq. (7) shows that the bounds on the simplified syn-
thetic input bounds are independent of Tmax, the assumption of
instantaneously achieving the desired roll and pitch angles is
contingent on the value of Tmax. Therefore, the synthetic in-
put space W indirectly depends on Tmax (explicit relationship
is not discussed in this paper).

4



CONSTRUCTION OF REGION OF
INFLUENCE

In this section, we use the simplified dynamics shown in Eq.
(5) to construct the RoI for an obstacle such that: (a) Once
the UAV (which is cruising towards the obstacle) enters this
region, it must initiate a maneuver to avoid the obstacle, (b)
while executing this maneuver to avoid the obstacle, it should
stay inside the RoI, and (c) after the obstacle has been avoided,
the UAV should be able to exit this region with its initial cruise
velocity. Here, we elaborate on the necessary elements needed
to construct the RoI as shown in Fig. 5. First, we have the Col-
lision Set Boundary (CSB) determining the front boundary of
the RoI. As discussed in the previous section, once the UAV
crosses CSB with cruise velocity, it must execute an obstacle
avoidance maneuver. Second, we construct a lane such the
UAV stays inside the lane during the course of this maneu-
ver. Finally, we construct a Post Obstacle Border (POB) such
that if the UAV successfully executes the avoidance maneuver
and stays in the lane, it should be able to exit the POB with
its initial cruise velocity. Before we state the expressions for
CSB, lanes and POB, we state the following theorem, which
will then be used to obtain the analytical expressions of these
elements.

Figure 5. Schematic of the region of influence (RoI)

Figure 6. Simplified synthetic input bounds

Theorem 1. Consider an axis-aligned rectangular obstacle
O =

{
[x y]T | x ∈ [xmin,xmax] , y ∈ [ymin,ymax]

}
as shown in

Fig. 5. For the dynamics shown in Eq. (5), initial state
X0 = [x ẋ y 0]T and simplified synthetic input space W de-
fined in Eq. (7), if applying the constant input wi(·) (input
corresponding the ith vertex of W such that w(t) = wi,∀t ≥ 0)

as shown in Fig. 6 results in collision with O for every
i ∈ {1,2,3,4}, then there does not exist any admissible input
w(·) (i.e., input signal where w(t) ∈W, ∀t ≥ 0) that avoids
collision.

Corollary: As a consequence of Theorem 1, if there exists
a feasible (safe) control input (that avoids collision), then the
constant input wi(t) = wi for some i ∈ {1,2,3,4} (i.e., one of
the vertices) also corresponds to a safe trajectory that avoids
collision.

Figure 7. Illustration of the parameters of CSB (ĝ), lane
(yl1, yl2) and POB (xpob)

Collision Set Boundary (CSB) Here, we provide safety guar-
antees for a cruising UAV in the presence of a single obstacle
by computing the initial states leading to inevitable collision
with the obstacle (unsafe region). We then obtain the bound-
ary (represented by an equation) separating the safe and un-
safe regions (CSB), which is used to determine the RoI around
the obstacle.

First, we define ‘path’ as a function path : R≥0×X×W∞→
R2, whose inputs are time, initial state and a control input
signal and the output is the position. Similarly, we define
vel : R≥0 × X ×W∞ → R2 whose output is the velocity
vector. Note that W∞ is the set of all admissible input signals.

Given the maximum cruise velocity, we define the safe
region G as the set of initial positions such that there exists
a control input signal w(·) ∈ W∞ that can avoid collision.
Note that for analysis of safe and unsafe sets, we are only
interested in the initial states that are ‘before’ the obstacle,
i.e. x≤ xmin. G can thus be described as below:

G =

{
(x,y) ∈R2

∣∣∣ ∃w(·) ∈W∞ s.t ∀t ≥ 0 ∀v ∈ [0,Vcruise],

path
(

t, [x v y 0]T ,w(·)
)

/∈ O, x≤ xmin

}
,

The unsafe set Ḡ is the complement of the safe set G,

Ḡ =

{
(x,y) ∈R2

∣∣∣ ∃t ≥ 0, ∃v ∈ [0,Vcruise] s.t ∀w(·) ∈W∞,

path
(

t, [x v y 0]T ,w(·)
)
∈ O, x≤ xmin

}
,
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As shown in Fig. 7, there exists a boundary ĝ(x,y) = 0 which
separates the safe and unsafe regions, where the function
ĝ : R2 → R is such that if (x,y) ∈ G, then ĝ(x,y) > 0 and if
(x,y) ∈ Ḡ, then ĝ(x,y)≤ 0.

For the initial conditions of the UAV mentioned above
(where x ≤ xmin and ẋ ≥ 0), if applying constant input w1(·)
and w2(·) leads to collision, applying w3(·) or w4(·) will
result in collision with the obstacle (proof not discussed).
Therefore, from Theorem 1 and the assumption on the initial
conditions, we can conclude that the initial position lies in the
unsafe region (Ḡ) only if applying w1(·) or w2(·) throughout
leads to collision with the obstacle. Therefore, we can express
our safe region as Ḡ = Ḡ1 ∩ Ḡ2. Here, Ḡi is the set of all
initial positions such that applying constant input wi(·) leads
to collision with the obstacle.

Ḡ1 =

{
(x,y) ∈ R2

∣∣∣ ∃t ≥ 0, ∃v ∈ [0,Vcruise] s.t.

path
(

t, [x v y 0]T ,w1(·)
)
∈ O, x≤ xmin

}
,

Ḡ2 =

{
(x,y) ∈ R2

∣∣∣ ∃t ≥ 0, ∃v ∈ [0,Vcruise]s.t.

path
(

t, [x v y 0]T ,w2(·)
)
∈ O, x≤ xmin

}
.

Each of these unsafe sets (Ḡ1 and Ḡ2) have their correspond-
ing complementary safe sets (G1 and G2), which can be de-
fined accordingly. Therefore, if the initial position is in G1
(or G2), there exists a trajectory that avoids the obstacle from
above (or below), that is, at x = xmin, y≥ ymax (or y≤ ymin).

Figure 8. Schematic of the functions which are used to con-
struct the CSB

As shown in Fig. 8, there exists a boundary g1(x,y) = 0 which
separates the sets G1 and Ḡ1. To obtain this, we first de-
fine the function g1 : R2 → R such that if (x,y) ∈ G1, then
g1(x,y)> 0 and if (x,y)∈ Ḡ1, then g1(x,y)≤ 0. Similarly, we
have another boundary g2(x,y) = 0 which separates the sets
G2 and Ḡ2, where g2 can be defined similar to g1. The expres-
sions for g1 and g2 are derived and discussed in the Appendix.
Since the initial positions (x,y) of the cruising UAV defining
the unsafe region ĝ(x,y)≤ 0 is the intersection of the regions

g1(x,y)≤ 0 and g2(x,y)≤ 0, the function ĝ can be defined for
y ∈ (ymin,ymax) as

ĝ(x,y) = max
(
g1(x,y),g2(x,y)

)
(8)

Depending on the maximum cruise velocity (Vcruise), maxi-
mum obstacle size (Smax) and simplified synthetic input space
(W), the above approach for computing the CSB (ĝ(x,y) = 0)
can result in two possible shapes of the boundary, as shown in
Fig. 9.

(a) CSB corresponding lower
cruise velocities

(b) CSB corresponding to
higher cruise velocities

Figure 9. Two possible shapes of the CSB

The CSB takes the shape in Fig. 9(a) (as discussed in the
Appendix) if the inequality in Eq. (9) is satisfied. In all other
cases the CSB takes the shape shown in Fig. 9(b).

Vcruise ≤ |w1,x|
√

ymax− ymin

|w1,y|+ |w2,y|
. (9)

The analytical expressions for y′ and y′′ corresponding to the
CSB shown in Fig. 9(a) are shown below (derived in the Ap-
pendix).

y′ = ymax−
1
2
|w1,y|

(Vcruise

|w1,x|

)2
,

y′′ = ymin +
1
2
|w2,y|

(Vcruise

|w2,x|

)2
.

(10)

Lane: The ‘lane’ around the obstacle is constructed as shown
in Fig. 7, such that for any initial position of a UAV cruising
towards the obstacle there exists a trajectory that avoids
collision with the obstacle while staying in the lane. In this
subsection, we first define the lane mathematically using its
parameters yl1 and yl2 and then derive the expressions for
these parameters.

In order to guarantee the existence of the safe trajec-
tory, it is assumed that the initial position of the UAV (α,β )
is inside the safe region i.e (α,β ) ∈ G. The goal is to obtain
yl1 and yl2 such that for any (α,β ) ∈ G, there exists a control
input signal w(·) ∈W∞ that satisfies the following:

yl2 ≤ pathy

(
t, [α v β 0]T ,w(·)

)
≤ yl1,

path
(

t, [α v β 0]T ,w(·)
)

/∈ O,

(11)
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for all time t ≥ 0 and all v ∈ [0,Vcruise]. Here, the output of the
function pathy : R≥0×X×W∞ → R is the y-component of
the trajectory. The expressions for the parameters yl1 and yl2
(derived in Appendix) are shown below. Note that the expres-
sions for lane parameters depend on the shape of the CSB.

yl1 =


ymax +

∣∣∣∣w1,y
w2,y

∣∣∣∣(ymax− y′) I f Eq.(9) holds

ymax +

∣∣∣∣w1,y
w2,y

∣∣∣∣(ymax− y′′′) otherwise

(12)

yl2 =


ymin−

∣∣∣∣w2,y
w1,y

∣∣∣∣(y′′− ymin) I f Eq.(9) holds

ymin−
∣∣∣∣w2,y

w1,y

∣∣∣∣(y′′′− ymin) otherwise

(13)

Post Obstacle Border (POB): In the previous subsections,
we have defined CSB and lane for a given obstacle such that
when the UAV is outside the CSB, there exists a trajectory
such that the UAV avoids the obstacle while staying in
the lane. Here, we define the post obstacle border by its
parameter xpob such that when the UAV follows the trajectory
mentioned above, it should cross the obstacle with its initial
cruise velocity.

For similar initial conditions as in the previous subsec-
tion (α,β ) ∈ G, we would like to obtain xpob ∈ R such that
for any (α,β ) ∈ G, there always exists a control input signal
w(·) ∈W∞ and a time t ′ ≥ 0 that satisfies all of the equations
in Eq. (14).

pathx

(
t ′, [α v β 0]T ,w(·)

)
= xpob

velx

(
t ′, [α v β 0]T ,w(·)

)
= v

yl2 ≤ pathy

(
t, [α v β 0]T ,w(·)

)
≤ yl1

path
(

t, [α v β 0]T ,w(·)
)

/∈ O,

(14)

for all t ∈ [0, t ′] and any v ∈ [0,Vcruise]. Here, the output of
the function pathx : R≥0×X×W∞→ R is the x-component
of the trajectory. Also, the output of the function velx :
R≥0×X×W∞→ R is the x-component of the velocity.
The parameter corresponding to POB is xpob and can be ex-
pressed (derivation in Appendix) as:

xpob = max
{

xmin +
V 2

cruise
2|w1,x|

, xmax

}
. (15)

Region of Influence: We denote the RoI as S ⊂ R2. For a
given axis aligned rectangular obstacle, we can express S as

shown in Eq. (16). Note that conv(· · ·) represents the convex
hull and xc = arg minx g(y) .

S= conv
{
(xc,yl2) , (xc,yl1) , (xpob,yl2) , (xpob,yl1)

}
(16)

To summarize, given the maximum cruise velocity Vcruise,
maximum obstacle size Smax and vehicle agility (Tmax, φmax
and θmax), we can construct the RoI using the expressions de-
rived above.

CONSTRUCTION OF CONTRACTS

As mentioned earlier, our objective is to enforce assumptions
(i.e., generate contracts) on UAV parameters (Vcruise, φmax,
θmax, Dod) and the environmental parameters (Smax, Dsep)
such that the optimization problem (1) is feasible, and thus
a safe flight is assured. To illustrate the construction of such
contracts, we consider single obstacle as well as multiple ob-
stacle scenarios. Instead of solving (1) for each combination
of parameters, we exploit the analytical constructions of RoI
discussed in the previous section for obtaining the contracts.
To determine the contract in the single obstacle scenario, we
construct the CSB and ensure that the UAV does not cross the
CSB before detecting the obstacle. In the presence of multiple
obstacles, in addition to satisfying the single obstacle contract,
we construct the RoI for each obstacle and ensure that the
minimum inter-obstacle separation is such that no two RoIs in
the obstacle field intersect.

Figure 10. Schematic of a UAV cruising in the presence of
a single obstacle, whose maximum expected size is Smax

Single Obstacle Contracts

Consider the scenario as shown in Fig. 10, where the UAV is
cruising in an environment in the presence of a single obsta-
cle (unkown location) whose maximum expected size (Smax)
is known. We wish to obtain a relationship between the obsta-
cle detection range, agility and the maximum allowable cruise
velocity such that the once the UAV detects the obstacle, it
should be able to avoid collision. From the previous section,
we can construct a CSB (which depends on Smax, Vcruise and
φmax) such that crossing the CSB will lead to inevitable col-
lision with the obstacle. Therefore, for each combination of
Vcruise and φmax (and θmax), we compute the CSB from Eq. (8)
and force the minimum required Dod to be equal to xmin− xc.
For a maximum expected obstacle size Smax = 4m, we obtain
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the hypersurface that separates the safe and unsafe combina-
tions as shown in Fig. 11. If the agility of the UAV is fixed,
it can be observed that an increase in the obstacle detection
range allows for greater maximum velocity. Similarly, for a
fixed cruise velocity, reduction in the obstacle detection range
must be compensated by increasing the agility of the UAV in
order to remain safe.

Figure 11. Contract plot used for calculating the maxi-
mum cruise velocity Vcruise to avoid a single obstacle in the
presence of limited obstacle detection range and agility.
Here, the maximum expected obstacle size Smax = 4m

Multiple Obstacle Contracts

When the UAV is cruising in an obstacle field in the presence
of multiple obstacles, the UAV parameters need to satisfy ad-
ditional contracts along with the single obstacle contract to
guarantee its safety. An example of a multiple obstacle con-
tract is the relationship between the maximum obstacle size
Smax, maximum cruise velocity Vcruise and minimum inter-
obstacle separation Dsep (center-center distance as shown in
Fig. 2) such that the cruising UAV not only avoids the de-
tected obstacle but also avoids collision with all neighboring
obstacles during the avoidance maneuver. To obtain this re-
lationship, we construct RoIs around an obstacle for different
combinations of Vcruise and Smax and for each combination,
we calculate the minimum separation required between two
such obstacles such that their ROIs do not intersect. For a
given maximum agility φmax = 15◦, we obtain the hypersur-
face separating the safe and unsafe regions as shown in Fig.
12. For a fixed maximum obstacle size, increase in the mini-
mum separation between obstacles will permit a greater max-
imum cruise velocity. Similarly, when the minimum separa-
tion distance is fixed, increase in the expected obstacle size
will lower the maximum cruise velocity in order to guarantee
safety.
Assuming that the single obstacle contract is satisfied and
the maximum expected obstacle size is fixed, we can obtain
the relation between minimum obstacle separation, maximum

Figure 12. Contract between minimum obstacle separa-
tion Dsep, obstacle size Smax and vehicle cruise velocity
Vcruise. Here φmax = 15◦

cruise velocity and agility of the UAV. We can see from Fig.
13 that when the maximum cruise velocity is fixed, decrease
in the agility of the UAV will require higher minimum obsta-
cle separation in order to remain safe.

Figure 13. Contract between minimum obstacle separa-
tion Dsep, vehicle cruise velocity Vcruise and vehicle agility
φ . Here, the maximum expected obstacle sie(Smax = 4m

.

SEQUENTIAL PLANNING FOR MULTIPLE
OBSTACLES

Assuming that the parameters are such that the contracts (in
the previous section) are satisfied i.e. RoIs do not intersect
and Dod ≥ xmin− xc , we present an approach to sequentially
solve the multiple obstacle avoidance path planning problem.
First, we define Obstacle of Interest Oi , the immediate
obstacle in the vicinity of the UAV such that the UAV will
collide with Oi, if no control action is taken. Then, we define
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the pre-condition on the UAV with respect to Oi such that the
UAV is cruising towards the obstacle and is exactly on the left
boundary of the RoI. Finally, we define the post-condition
on the UAV with respect to Oi such that the UAV is cruising
away from the obstacle and is on the POB.

Figure 14. Induction-based Algorithm for sequential-
avoidance in an obstacle field

min
q(·),w(·)

Ji(q, ū), (17)

s.t. q̇ = Fq+Gū; ,
x(t0) = (xc)i, ẋ(t0)≤Vcruise

ẏ(t0) = 0, y(t0) ∈ [(yl2)i,(yl1)i]

x(t f ) = (xpob)i, ẋ(t f ) = ẋ(t0), ẏ(t f ) = 0

[x(t) y(t)]T ∈ Si, [x(t) y(t)]T /∈ Oi, ∀t ∈ [t0, t f ]

ū ∈ Ū

Given the maximum allowable velocity, if the initial state of
the UAV satisfies the pre-condition of the first obstacle of in-
terest O1, we can guarantee the existence of a safe trajectory
such that the UAV avoids the obstacle O1, stays in the RoI
of O1 and reaches the state which satisfies the post-condition
of O1. Since we assume that there is no intersection between
the RoIs, this trajectory would not intersect any other obsta-
cle. Therefore, the UAV can follow this trajectory, reach the
post-condition of O1 and continue to cruise until it satisfies the
pre-condition of its next obstacle of interest. Using this induc-
tion argument (as illustrated in Fig. 14), the UAV can avoid
multiple obstacles sequentially with guaranteed safety. To ob-
tain the trajectory from the states satisfying pre-condition of
Oi to the states satisfying post-condition of Oi, we solve the

optimization problem in (17), which constraints the trajectory
to lie inside the RoI. Thus the optimization problem in (1) can
be broken down into a sequence of single obstacle avoidance
problems (17). Here, we represent the RoI of Oi as Si.

Algorithm Implementation: We illustrate the application of
the sequential multiple obstacle avoidance algorithm devel-
oped in the previous section for 6-DoF path planning for a
UAV. We consider a scenario where the UAV (quadcopter) is
cruising in the positive x-direction towards an obstacle field
(shown as green boxes in Fig. 15(a)) and the obstacles are
such that (1) the initial position is outside the CSB of every
obstacle (2) RoI of any two obstacles (shown as red boxes)
do not overlap. Therefore, we guarantee the existence of a
safe trajectory and implement the induction scheme shown in
Fig. 14 to obtain the trajectory. The initial position of the
UAV is [x y z] = [0m 0m − 4m], with initial x-velocity being
2.8m/s. The UAV plans a trajectory (shown in blue in Fig.
15(a)) to avoid the left-most obstacle by ignoring all other ob-
stacles, then cruises in the x-direction with the same velocity.
With the induction scheme implemented, it then encounters
the center obstacle and the same process is repeated. Finally,
after all three obstacles have been avoided, the final position
of the UAV is [x y z] = [46m 0.3m − 4m]. Figure 15(b)
shows that the UAV gains altitude while trying to avoid the
obstacle since increasing acceleration along z increases ma-
neuverability. Note that z axis is pointed downwards in the
NED frame.

INCORPORATING TRACKING ERROR
INTO CONTRACTS

In the previous section, we guaranteed that the UAV can avoid
multiple obstacles sequentially and planned safe trajectories
by solving the optimization problem Eq. (17) for each ob-
stacle of interest Oi. However, these planned trajectories are
generated assuming that UAV dynamics differentially flat as
in Eq. (3), which is equivalent to the 6-DoF dynamics in Eq.
(2). The dynamics in Eq. (3) assumes that the roll φ and pitch
θ angles are instantly achieved. However, since the inner loop
regulation/tracking is not perfect, there will always be some
finite tracking error, depending on the quality of the trajectory
tracking controller. Here, we first evaluate the performance of
a given controller used to track the trajectory shown in Fig. 15
and later discuss the general idea behind incorporating error
in position and error in velocity into the contract-based frame-
work such that the implementation of the algorithm shown in
Fig. 14 can still guarantee safety of the UAV.

The controller used to validate the planned trajectories in Fig.
15 uses dynamic inversion for a non-linear state space model
of the quadcopter as discussed in (Ref. 14). The states are
position, Euler angles and their respective derivatives. The
control input is the rotational speed of the motor (RPM) and
it is assumed that the thrust produced by the motor is propor-
tional to the square of RPM. The controller was implemented
on a simulation platform (MATLAB) and the actual trajecto-
ries were obtained as shown in Fig. 16, where we can see
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(a) Path of the planned trajectory

(b) Altitude and heading angle of the planned trajectory

Figure 15. Implementation of the induction based algo-
rithm in the 6-DoF planning where the maximum agility is
Tmax

m = 2g and φmax = 5◦. An additional constraint on ψ̈ is
imposed for increasing smoothness in the resulting head-
ing angle

that the planned trajectories are tracked with reasonable pre-
cision. Since the simplified dynamics in Eq. (3) which has
been used to plan trajectories assumes that the roll and pitch
angles can be instantaneously achieved, we can conclude that
this assumption is acceptable for planning purposes.

Position Tracking Error: For a given scenario, assuming
that the tracking error for a particular controller is known,
we define the position tracking error as a function of time
etr(t) =

√
(x(t)− x̂(t))2 +((y(t)− ŷ(t))2, where x̂(t), ŷ(t) are

the actual trajectory paths as shown in Fig. 17(a). Note that
we assume etr is computed for the reference trajectory cor-
responding to the poorest tracking. Now we can define the
maximum tracking error for a planned trajectory by Etr, where
Etr = max

t
etr(t). Even if the planned trajectories do not in-

tersect with the obstacle, existence of a non-zero Etr might
result in collision of the UAV with the obstacle. Therefore,
we would like to take consider the tracking error beforehand
while planning trajectories. In this case, we plan the trajecto-
ries for an inflated virtual obstacle as shown in Fig. 17(b) such
that even though the actual trajectory might intersect with the
virtual obstacle, the UAV will remain safe since the actual tra-
jectory will not be intersecting with the real obstacle. If the

(a) Comparing the planned and actual trajectories

(b) The top view comparison between the planned and
the actual path of the UAV (x-y plane)

Figure 16. Results for trajectory tracking using non-linear
Dynamic Inversion-based controller

obstacle of interest in Oi, the virtual obstacle (Ôi) can be ex-
pressed as

Ôi = Oi
⊕

E, (18)

where E =

{
(x,y)

∣∣∣∣ x ∈ [−Etr,Etr], y ∈ [−Etr,Etr]

}
and

⊕
denotes the Minkowski sum.

Velocity Tracking Error: For a given scenario and partic-
ular controller, let the maximum tracking error in velocity
in the x-direction be δVx and y-direction be δVy. There-
fore, when the UAV is outside the RoIs, the actual veloc-
ity of the UAV (V̂) will satisfy V̂ ∈ [0,Vcruise]

⊕
V, where

V=

{
(vx,vy)

∣∣∣∣ vx ∈ [−δVx,δVx], vy ∈ [−δVy,δVy]

}
. If δVy is

small, the velocity tracking error can be incorporated into the
contract by constructing the RoI assuming the worst case sce-
nario, where the actual cruise velocity is V̂=(Vcruise+δVx,0).
If the RoIs are intersecting, Vcruise needs to be decreased such
that the contract for the multiple obstacle scenario is satisfied.

CONCLUSIONS

To guarantee the safety of a UAV passing through an obsta-
cle field with unknown obstacles, the framework proposed
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(a) Schematic of the position tracking error in
the x-y plane where the actual position of the
UAV at time t can be anywhere in the blue re-
gion

(b) Schematic of the virtual obstacle
(inflated) to compensate for position
tracking error

Figure 17. Incorporating position tracking error into the
contract.
in this paper enforces assumptions on the vehicle and envi-
ronmental parameters, which are contracts. These contracts
were obtained analytically by constructing a Region of Influ-
ences (RoI) around each obstacle such that obstacle field with
non-intersecting RoIs guarantee safety of the UAV. Assuming
that the contracts are satisfied, an induction-based algorithm
is proposed such that the UAV can plan trajectories to avoided
obstacles sequentially before reaching its target. The algo-
rithm also guarantees that the each trajectory that is planned to
avoid a particular obstacle completely lies inside its RoI. Af-
ter showing that the planned trajectories can be tracked with
reasonable accuracy in the presence of a controller, this pa-
per proposes a methodology to incorporate the tracking error
(both position and velocity) into the assume-guarantee frame-
work.

Author contact: Kaushik Nallan nallak@rpi.edu, Sandi-
pan Mishra mishrs2@rpi.edu and A. Agung Julius
agung@ecse.rpi.edu

APPENDIX

Detailed derivation of CSB, lane and POB parameters

Collision Set Boundary (CSB): Given an axis-aligned
rectangular obstacle, we define f1 : R→ R such that if the
UAV is initially on the curve x = f1(y) and is cruising with
Vcruise, applying the constant control input w1 will result in
the UAV reaching the point (xmin,ymax), which is the top
corner of the obstacle. Using the double integrator dynamics
of the system, we obtain the expression for f1, which is

f1(y) = xmin−Vcruise

√
2(ymax− y)
|w1,y|

+
|w1,x|
|w1,y|

(ymax− y). (19)

Next, we define fc : R→ R such that if the UAV is initially
on the curve x = fc(y) and is cruising with Vcruise, applying
the constant control input w1 (or w2) will result in the UAV
reaching xmin with ẋ = 0. Since the dynamics are decoupled
in x and y, fc is a constant function expressed as

fc(y) =
V 2

cruise
2|w1,x|

. (20)

Lastly, we define y′ such that the curves f1 and fc intersect at

(
V 2

cruise
2|w1,x|

,y′). If the UAV cruising from this point, applying w1

will not only result in reaching the point (xmin,ymax), but also
reaches the point with ẋ = 0.

y′ = ymax−
1
2
|w1,y|

(Vcruise

|w1,x|

)2
. (21)

Now, g1 can be expressed as a piecewise function of f1 and fc
as shown below.

g1(x,y) =
{

x− f1(y) y′ ≤ y≤ ymax
x− fc y≤ y′ (22)

Similarly, we define f2 : R→ R such that if the UAV is ini-
tially on the curve x = f2(y) and is cruising with Vcruise, ap-
plying the constant control input w2 will result in the UAV
reaching the point (xmin,ymin), which is the bottom corner of
the obstacle. The expression for f2 is

f2(y) = xmin−Vcruise

√
2(y− ymin)

|w2,y|
+
|w2,x|
|w2,y|

(y− ymin). (23)

We define y′′ such that the curves f2 and fc intersect at

(
V 2

cruise
2|w1,x|

,y′′). If the UAV cruising from this point, applying
w2 will not only result in reaching the (xmin,ymin), but also
reaches the point with ẋ = 0.

y′′ = ymin +
1
2
|w2,y|

(Vcruise

|w2,x|

)2
. (24)

Now, g2 can be expressed as a piecewise function of f2 and fc
as shown below.

g2(x,y) =
{

x− f2(y) ymin ≤ y≤ y′′

x− fc y≥ y′′ (25)

The Collision Set Boundary (CSB) is then defined by ĝ(x,y)=
0, where for y ∈ (ymin,ymax), we have

ĝ(x,y) = max
(
g1(x,y),g2(x,y)

)
. (26)

From Eq. 22, Eq. 25 and Eq. 26, we can see that the shape
CSB will depend on the relationship between y′ and y′′. If y′>
y′′, the corresponding condition on Vcruise is obtained using
Eq. (21) and Eq. (24) which is

Vcruise ≤ |w1,x|
√

ymax− ymin

|w1,y|+ |w2,y|
. (27)
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If y′ < y′′, there will be y′′′ which is obtained from the inter-
section of f1 and f2 by solving the equation below.

f1(y′′′) = f2(y′′′). (28)

Lane: Since applying no simplified synthetic control input
will result in crossing the CSB before colliding with the
obstacle, we obtain the expressions for the lane parameters
by analysing trajectories starting from the CSB.

For any initial position (α,β ) of the UAV lying on x = f1(y),
applying w1(·) would lead to reaching the point (xmin,ymax)
with ẋ≥ 0 and ẏ≥ 0. The upper bound of the lane ȳ depends
on the minimum y-value the UAV gains (after avoiding the
obstacle) before ẏ becomes 0. From the double integrator
dynamics and the synthetic input bounds, we have

ȳ(β ) = ymax +

∣∣∣∣w1,y

w2,y

∣∣∣∣(ymax−β ). (29)

Similarly, for any initial position (α,β ) of the UAV lying on
x = f2(y), applying w2(·) would lead to reaching the point
(xmin,ymin) with ẋ ≥ 0 and ẏ ≤ 0. The lower bound of the
lane depends on the minimum y-value the UAV gains in −y
direction before Ẏ becomes 0 (y(β )). The expression for y is

y(β ) = ymin−
∣∣∣∣w2,y

w1,y

∣∣∣∣(β − ymin). (30)

If the initial position (α,β ) of the UAV lying on fc, applying
a constant input of only w1,x(·) would lead to reaching the
outer edge of the obstacle with ẋ = 0 and ẏ = 0. In this case,
the UAV can avoid the obstacle with the upper bound of lane
as ymax and lower bound as ymin.

For all possible initial conditions (α,β ), we can see,
from (29) and (30), that the upper boundary of the lane
depends on the smallest value of β and the lower boundary
depends on the largest value of β . Therefore, the lane
parameters yl1 and yl2 can be expressed as

yl1 =


ymax +

∣∣∣∣w1,y
w2,y

∣∣∣∣(ymax− y′) I f Eq.(9) holds

ymax +

∣∣∣∣w1,y
w2,y

∣∣∣∣(ymax− y′′′) otherwise

(31)

yl2 =


ymin−

∣∣∣∣w2,y
w1,y

∣∣∣∣(y′′− ymin) I f Eq.(9) holds

ymin−
∣∣∣∣w2,y

w1,y

∣∣∣∣(y′′′− ymin) otherwise

(32)

Post Obstacle Border: It has been established that for any
initial position of the UAV lying on x = f1(y) or x = f2(y)
or x = fc would result in reaching x = xmin with ẋ ≥ 0. The
parameter for POB is obtained such that there exists a safe tra-
jectory starting from any (α,β ) whose ẋ = ẋ(t = 0) ≤ Vcruise

at xpob. Therefore, we consider the worst case scenario where
ẋ = 0 at x = xmin and ẋ = Vcruise at x = xpob to obtain the ex-
pression for xpob as shown

xpob = xmin +
V 2

cruise
2|w1,x|

. (33)

Since crossing the POB implies that the UAV leaves the RoI
the obstacle (successful avoidance), we enforce an additional
constraint, which is xpob ≥ xmax.
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