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ABSTRACT
This work introduces the use of “global” stochastic models to detect and identify rotor failures in multicopters under
different operating conditions, turbulence, and uncertainty. The identification of an extended class of time-series mod-
els known as Vector-dependent Functionally Pooled AutoRegressive models, which are characterized by parameters
that depend on both forward velocity and gross weight, using scalar or vector aircraft response signals under white
noise excitation has been described. A concise overview of the residual based statistical decision making schemes
for fault detection and identification of rotor failures is provided. The scalar and vector statistical models, along
with residual variance and residual uncorrelatedness methods were validated and their effectiveness was assessed by
a proof-of-concept application to aircraft flight for healthy and faulty states under severe turbulence and intermediate
operating conditions. The results of this study demonstrate the effectiveness of all the proposed residual-based time
series methods in terms of prompt rotor fault detection, although the methods based on Vector AutoRegressive models
exhibit improved performance compared to their scalar counterparts with respect to their performance in identifying
rotor failures in the post-failure controller compensated state.

NOTATION

α : Type I risk level
β : Type II risk level
γ : Autocorrelation
τ : Lag
σ2 : Residual variance
Σ : Residual covariance matrix
E{·} : Expected value
PE : Prediction Error
PSD : Power Spectral Density
BIC : Bayesian Information Criterion
RSS : Residual Sum of Squares
ACF : Auto-Covariance Function
iid : identically independently distributed
SPP : Samples Per Parameter
LS : Least Squares
SSS : Signal Sum of Squares
AR : Scalar AutoRegressive model
VAR : Vector AutoRegressive model
FP : Functionally Pooled
VFP : Vector Functionally Pooled

Presented at the VFS International 76th Annual Forum &
Technology Display, Virginia Beach, Virginia, USA, October
6–8, 2020. Copyright c© 2020 by the Vertical Flight Society.
All rights reserved.

INTRODUCTION

In recent years there has been immense interest in ur-
ban air mobility (UAM), enabled by autonomous electric
VTOL (eVTOL) aircraft, as a revolutionary solution to
extreme roadway congestion in major cities. A NASA
sponsored study concluded UAM is a viable option and
assessed its available market value at $500B (Ref. 1),
but enabling widespread access to transportation services
in dense urban environments requires real-time system-
level awareness and safety assurance. As rotorcraft are
complex systems with strong dynamic coupling between
rotors, fuselage, and control inputs, they pose signifi-
cant system modelling and identification challenges when
compared to fixed-wing aircraft. These issues, as well as
potential solutions, have been explored in the recent liter-
ature. Fault tolerant control for multi-rotors (Refs. 2, 3),
as well as various fault diagnosis methods for helicopters
have also been proposed (Refs. 4–6).

Statistical time series methods have been used to detect
various fault types in aircraft systems due to their sim-
plicity, efficient handling of uncertainties, no require-
ment of physics-based models, and applicability to dif-
ferent operating conditions (Refs. 7–10). Dimogianopou-
los et al. (Ref. 11) have demonstrated the effectiveness
of statistical schemes based on a Pooled Non-Linear Au-
toRegressive Moving Average with eXogenous excitation
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(P-NARMAX) representation that models the pilot input
and aircraft pitch rate to detect and isolate aircraft sys-
tems faults under different flight conditions, turbulence
levels, and fault scenarios. In another study, reliable
fault detection and identification have been achieved un-
der unknown external disturbances and various maneu-
vering settings by modelling relationships among aircraft
attitude data via stochastic Time-dependent Functionally
Pooled Non-linear AutoRegressive with Exogenous exci-
tation (TFP-NARX) representations (Ref. 12).

Kopsaftopoulos and Fassois formulated a novel stochas-
tic identification framework based on the postulation of
Vector-dependent Functionally Pooled ARX (VFP-ARX)
models that employ data records obtained under varying
operating conditions and uncertainty in order to identify
a “global” model of the system dynamics (Refs. 13–15).
The functional pooling concept is used to represent dy-
namics under multiple operating conditions and has been
further expanded to model vector excitation-response sig-
nals in Refs. 16, 17. This identification framework in-
corporates parsimonious VFP models that can fully ac-
count for data cross-correlations among the operating
conditions, perform functional pooling for the simulta-
neous treatment of all data records, and achieve sta-
tistically optimal parameter estimation based on Least
Squares (LS) and Maximum Likelihood (ML) schemes.
Moreover, novel approaches for online rotor fault detec-
tion and identification in multicopters using knowledge-
based, statistical time series, and time-series assisted
machine learning methods under different levels of tur-
bulence and uncertainty have been recently studied in
Refs. 18–20 .

The objective of the present study is the introduction and
assessment of a novel online rotor fault detection and
identification framework based on a stochastic “global”
model of the healthy rotorcraft that accounts for varying
operating conditions in the face of turbulence and un-
certainty. More specifically, the cornerstone of the pro-
posed framework lies on the identification of stochastic
VFP models that can accurately represent the dynamics
of a hexacopter under varying forward velocity and gross
weight configurations. These models can subsequently
enable online fault detection and identification via statis-
tical decision making schemes based on residual proper-
ties under predetermined confidence levels (type I and II
error probabilities, i.e., false alarm and missed faults).

HEXACOPTER MODEL AND DATA
GENERATION

Physics-Based Modelling of Multicopter System

A flight simulation model has been developed for a reg-
ular hexacopter (Fig. 1) using summation of forces and

Figure 1: Schematic representation of a regular hexa-
copter

Figure 2: Controller Block Diagram

moments to calculate aircraft accelerations. This model
is used as the source of simulated data under varying op-
erating and environmental conditions, as well as different
fault types. Rotor loads are calculated using Blade El-
ement Theory coupled with a 3×4 Peters-He finite state
dynamic wake model (Ref. 21). This model allows for the
simulation of abrupt rotor failure by ignoring the failed
rotor inflow states and setting the output rotor forces and
moments to zero.

A feedback controller is implemented on the nonlinear
model to stabilize the aircraft altitude and attitudes, as
well as track desired trajectories written in terms of the
aircraft velocities. This controller is designed at multiple
trim points, with gain scheduling between these points to
improve performance throughout the flight envelope.

The state vector consists of the 12 rigid body states and
is defined in Eq. 1.

x =
{

X Y Z φ θ ψ u v w p q r
}T

(1)
The input vector is comprised of the first four indepen-
dent multirotor controls for collective, roll, pitch and yaw
and is defined in Eq. 2:

u =
{

Ω0 ΩR ΩP ΩY
}T (2)

The control architecture is illustrated in Fig. 2 and de-
tailed in Ref. 2. This control design has been demon-
strated to perform well even in the event of rotor 1, 2 or 6
failure, with no adaptation in the control laws themselves.
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Data Generation

A continuous Dryden wind turbulence model (Ref. 22)
has been implemented in the flight simulation model. The
Dryden model is dependent on altitude, length scale, and
turbulence intensity and outputs the linear and angular ve-
locity components of continuous turbulence as spatially
varying stochastic signals. The proper combination of
these parameters determines the fit of the signals to ob-
served turbulence. In this system, altitude is taken as 5
m (16.4 ft) and the length scale as the hub-to-hub dis-
tance of the hexacopter, which is 0.6096 m (2 ft). The
data sets for aircraft states are generated through a series
of simulations for different forward velocities and gross
weights under severe level of turbulence for healthy air-
craft. Similarly, data has also been generated for different
rotor failures under different operating conditions. Note
that the rotor failures addressed in this work are: front ro-
tor (rotor 1), right-side rotor (rotor 2), and left-side rotor
(rotor 6) failure (See Fig. 1).

Model identification is based on the stochastic aircraft
output signals obtained under white noise excitation
(Ref. 23) of the multirotor controls (Ref. 24) correspond-
ing to a set of admissible flight states (operating condi-
tions). The excitation ensures that the relevant rigid body
modes have been properly excited so that the model esti-
mated on basis of these signals describes the system ad-
equately. A sample of K1 values of forward velocity are
used, represented by k1 (first element of vector k) and
a sample of K2 values are used for gross weight, repre-
sented by k2 (second element of vector k). A total of
K1×K2 healthy flight simulations (one for each element
of k) are run, with the complete series covering the re-
quired range of each scalar parameter, say [k1

min,k
1
max] =

[2,12] m/s and [k2
min,k

2
max] = [2,5] kg , via discretizations

k1 = [k1
1,k

1
2 . . . ,k

1
K1
] = [2, 3, 4, . . .10, 11, 12] m/s and

k2 = [k2
1,k

2
2, . . . ,k

2
K2
] = [2, 3, 4, 5] kg. For each flight

state (defined by vector k), data is recorded from simula-
tions at a sampling frequency, Fs = 1000 Hz, to avoid any
numerical instability issues. In the case of any rotor fail-
ure, the aircraft is unable to recover at lower and higher
forward velocities for high gross weights. This is due
to the fact that without changing the rotor size, the total
thrust required to fly the aircraft in these conditions is not
attainable within rotor speed limitations. Hence, the rotor
failure models are based on datasets generated with sim-
ilar white noise excitation but under restricted operating
conditions as shown in Table 1.

Test data sets for validating the models and methods have
been also generated without any excitation (because the
system will not be actively excited during real flight) and
under severe turbulence for some intermediate “unmod-
elled” (not used in baseline modelling) grid of operat-
ing conditions, like forward velocity of [3.5,4.5, . . . ,11.5]

Table 1: Training Data

Aircraft Velocity Gross Weight
state Range (m/s) Range (kg)
Healthy [2,3, . . . ,12] [2,3,4,5]
Aircraft
Rotor 1, 2, 6 [4,5, . . . ,9] [2,3,4]
Failure
Excitation: White Noise
Signal length: 80 s
For rotor failure signals, failure happens at 10 s
Sampling frequency Fs: 1000 Hz
Turbulence level: Severe

m/s and gross weight of [2.25,2.5,2.75,3.25,3.5,3.75]
kg.

General Workframe of Rotor Failure Detection and
Identification

Let Zo be signals that designate the aircraft under con-
sideration in its healthy state, and Z1,Z2 and Z6 the air-
craft under fault of Rotor 1,2, and 6. Zu designates
the unknown (to be determined) state of the aircraft.
Statistical learning methods explored in this study are
based on discretized aircraft states signals y[t]1 only (for
t = 1,2, . . . ,N). N denotes the number of samples and
the conversion from discrete normalized time to analog
time is based on (t − 1)Ts, with Ts being the sampling
period. The signals are represented by Z and subscript
(o,1,2,6,u) is used to denote the corresponding state of
the aircraft that produced the signals.

The signals generated from simulation are analyzed by
non-parametric followed by parametric statistical meth-
ods and proper models are fitted and validated. Such
models are trained for the cases Zo,Z1,Z2,Z6 in the base-
line phase. Fault detection and identification (FDI) is
performed in the online inspection phase by statistically
comparing the information (residual based test statistics,
Q) extracted from the current, unknown signals via the
baseline models with predetermined baseline values. The
general workframe of residual based FDI is depicted in
Fig. 3.

BASELINE MODELLING OF THE
AIRCRAFT

The aircraft signals for roll, pitch, and yaw attitudes gen-
erated via a series of simulations of forward flight and
gross weight of the hexacopter under severe turbulence

1A functional argument in parentheses designates function of a real
variable; for instance x(t) is a function of analog time t ∈ R. A func-
tional argument in brackets designates function of an integer variable;
for instance x[t] is a function of normalized discrete time (t = 1,2, . . .).
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Figure 3: General workframe of global statistical time series methods for fault detection and identification.

for healthy and different faulty states are used for model
identification. In the present scenario, response-only sig-
nals were obtained under white noise excitation x[t].

Non-Parametric Identification

As a first step of the analysis, the non-parametric iden-
tification of the collected signals is based on the Welch-
based power spectral density (PSD) estimate. The dis-
crete Fourier transform of the signal of i-th window is
given by:

Y (i)
L [ jω] =

1√
L

L−1

∑
t=0

y[t] ·w[t] · e− j2πkt/N (3)

where L denotes the length of the window (w), and ω

the frequency. Then, the Welch estimate of the PSD of a
discrete-time signal is defined as follows:

Ŝyy(ω) =
1
K

K

∑
i=1

Y (i)
L [ jω] ·Y (i)

L [− jω] (4)

where K denotes the number of windows the signal is
divided into. The PSD provides a description of the vari-
ation in the signal’s power versus the frequency. It can
provide a preliminary idea on the dynamic content of the
signal.

Global Identification: Scalar VFP Model

The identification of a “global” Vector-dependent Func-
tionally Pooled AutoRegressive (VFP-AR) model in-
volves consideration of all admissible operating condi-
tions. The data generated under the various forward ve-
locities and gross weights (See Fig. 4) covering the re-
quired range of each variable is represented as follows:

yk[t] with t = 1,2, ...,N; k =
[
k1 k2]

k1 ∈
[
k1

1,k
1
2, . . . ,k

1
K1

]
; k2 ∈

[
k2

1,k
2
2, . . . ,k

2
K2

] (5)

Figure 4: Schematic representation of data collection
for the identification of a VFP model under different
flight states characterized by varying forward velocity
and gross weight.
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with yk[t] being the univariate response at some operating
condition ki, j = [k1

i k2
j ].

The VFP-AR(na)pa model structure is of the following
form:

yk[t] =
na

∑
i=1

ai(k) · yk[t− i]+ ek[t]

ek[t]∼ iid N (0,σ2
e (k)), k ∈ R2

ai(k) =
pa

∑
j=1

ai, j ·G j(k)

E{eki, j
[t]·ekm,n

[t− τ]}= γe[ki, j,km,n] ·δ [τ]

(6)

where na designates the AutoRegressive (AR) order, ek[t]
the model’s residual (one-step-ahead prediction error) se-
quence, that is a white (serially uncorrelated) zero mean
sequence with variance σ2

e (k).This sequence should be
serially uncorrelated but potentially cross-correlated with
its counterparts corresponding to different simulations
(different k’s). The symbol E{·} designates statistical
expectation, δ [τ] the Kronecker delta (equal to unity
for τ = 0 and equal to zero for τ 6= 0) , N (·, ·) Gaus-
sian distribution with the indicated mean and variance,
and iid stands for identically independently distributed.
The AR parameters ai(k) are modeled as explicit func-
tions of the vector k (which contains the forward veloc-
ity and gross weight components) by belonging to pa-
dimensional functional subspace spanned by the mutually
independent basis functions, referred to as the functional
basis:

F 〈ai(k)〉= [G1(k) G2(k) . . .Gpa(k)] (7)

The functional basis consists of polynomials of two vari-
ables (bivariate) obtained as cross products from their
corresponding univariate polynomials (Chebyshev, Leg-
endre, Jacobi, and other families of orthogonal polyno-
mials, see Appendix A). In this work, Chebyshev type II
polynomials are used as functional basis. The constants
ai, j designate the AR coefficients of projection onto the
functional basis. The identification of such parametric
time series models is comprised of two main tasks: pa-
rameter estimation and model order selection.

The VFP-AR model is parameterized in terms of the pa-
rameter vector to be estimated2 from the measured sig-
nals:

θ̂ ,
[
a1,1 a1,2 . . . ana,pa

]
(8)

2A hat designates estimator/estimate of the indicated quantity; for
instance σ̂ is an estimator/estimate of σ.

and can be written in linear regression form as:

yk[t] =
[
ϕ

T
k [t]⊗gT (k)

]
·θ + ek[t]

yk[t] = φ
T
k [t] ·θ + ek[t]

where:

ϕk[t],
[
yk[t−1] . . .yk[t−na]

]T
na×1

g(k),
[
G1(k) . . .Gpa(k)

]T
pa×1

θ ,
[
a1,1 . . .ana,pa

]T
(na×pa)×1

(9)

Pooling together the expressions of the VFP-AR
model corresponding to all vector operating parame-
ters k (k1,1,k1,2, . . . ,kK1,K2) considered in the simulation
yields:

yk1,1
[t]

...
ykK1,K2

[t]

=


φ T

k1,1
[t]

...
φ T

kK1 ,K2
[t]

 ·θ+


ek1,1
[t]

...
ekK1 ,K2

[t]


=⇒ y[t] =Φ[t] ·θ+ e[t]

(10)

Substituting the data for t = 1,2, ...,N results in the fol-
lowing expression:

y =Φ ·θ+ e
where :

y ,

y[1]
...

y[N]

 ; Φ,

Φ[1]
...

Φ[N]

 ; e ,

e[1]
...

e[N]

 (11)

Notice that despite its resemblance to standard regres-
sion, this expression includes a rich structure of inter-
dependencies among the different variables and simu-
lations, which need to be carefully taken into account.
Furthermore, the term “functional pooling” signifies the
functional dependence of each equation on the oper-
ating parameter vector k. Using the above linear re-
gression framework, the simplest approach for estimat-
ing the projection coefficient vector θ is based on min-
imization of the ordinary least squares (OLS) criterion
JOLS := 1

N ∑
N
t=1 eT [t]e[t]. A better criterion according to

the Gauss–Markov theorem (Ref. 25) is the weighted
least squares (WLS) criterion:

JWLS :=
1
N

N

∑
t=1

eT [t]Γ−1
e[t]e[t] =

1
N

eT [t]Γe−1e[t] (12)

which leads to the weighted least squares(WLS) estima-
tor:

θ̂
WLS =

[
ΦTΓ−1

e Φ
]−1[

ΦTΓ−1
e y

]
(13)

where Γe = E[eeT ] (Γe = Γe[t] ⊗ IN), where IN is the
N ×N unity matrix) designates the residual covariance
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matrix, which is practically unavailable. Nevertheless, it
may be consistently estimated by applying (in an initial
step) ordinary least squares (Ref. 26). Once θ̂WLS is ob-
tained, the final residual variance and residual covariance
matrix estimates are calculated as:

σ̂
2
e (k, θ̂

WLS) =
1
N

N

∑
t=1

e2
k[t, θ̂

WLS]

Γ̂e[t] =
1
N

e[t, θ̂WLS]eT [t, θ̂WLS]

(14)

The problem of VFP-AR model structure selection for a
given basis function family consists of model order de-
termination for the AR polynomials and determination
of their corresponding functional subspaces. Usually,
the AR model order is initially selected via customary
model order selection techniques (Bayesian Information
Criterion (BIC) and Residual Sum of Squares over Sig-
nal Sum of squares (RSS/SSS)) (Ref. 27) from individual
datasets corresponding to a single cross-section (Ref. 18).
A cross-section corresponds to a flight state defined by a
pair of forward velocity and gross weight values, consid-
ered in the training dataset. Next, maximum functional
subspace dimensionalities are considered, which define
the search space of the functional subspace estimation
subproblem. The exact subspace dimensionalities is de-
cided by minimization of the BIC with respect to the can-
didate basis functions.

Model structure estimation may then be seen as the es-
timation of the integer-valued model structure vector p,
which to be uniquely defined, transformed into a binary
variable vector as follows (Ref. 14):

p , [(1,1),(1,2), . . . ,(K1,K2)]1×(K1K2) (15)

Next, the selection of the final dimensionality may be
based on minimization of the BIC (Ref. 14):

p̂ = argmin
p

BIC(p)

BIC(p) = lnL+dim(θ) · ln NK1K2

N
where, L = ∑σ

2
e (k) ∀ ki, j

i = 1, ...,K1 j = 1, ...,K2

(16)

The Residual sum of Squares over Signal Sum of Squares
(RSS/SSS) for all the cross-sections used in model esti-
mation is given by:

RSS
SSS

= ∑
∑

N
t=1 e2

k[t]

∑
N
t=1 y2

k[t]
∀ ki, j

i = 1, . . . ,K1, j = 1, . . . ,K2

(17)

Global Identification: Vector VFP Model

The identification of a Vector-dependent Function-
ally Pooled Vector AutoRegressive (VFP-VAR) model
employs multivariate3 (s-variate) time series mod-
elling (Refs. 28, 29). Though their resemblance to their
univariate (or scalar) counterparts, they have a richer
structure as they can simultaneously model vector sig-
nals, that is signals collected from multiple outputs and/or
inputs. The aircraft response (attitude) signals recorded
under various operating conditions can be collectively
represented as follows:

yk[t] with t =1,2, . . . ,N; k =
[
k1 k2]

k1 ∈
[
k1

1,k
1
2...,k

1
K1

]
; k2 ∈

[
k2

1,k
2
2...,k

2
M2

] (18)

where yk[t] is the (s×1) response vector at some operat-
ing condition k = [k1

i k2
j ].

The VFP-VAR(na)pa model structure is of the following
form:

yk[t] =
na

∑
i=1

Ai(k)yk[t− i]+ ek[t]

ek[t]∼ iid N (0,Σe(k)), k ∈ R2

Ai(k) =
pa

∑
j=1

Ai, j ·G j(k)

E{eki, j
[t]·eT

km,n
[t− τ]}= Σe[ki, j,km,n] ·δ [τ]

(19)

with na designating the AutoRegressive (AR) model
order, ek[t] is a (s × 1) innovations vector which is
zero mean, serially uncorrelated, with fully parametrized
cross–covariance matrices Σe(k). E{·} designates sta-
tistical expectation, and δ (τ) the Kronecker delta func-
tion. The AR matrices Ai(k) are fully parametrized and
have dimension of (s× s). They are expressed as explicit
functions of the operating parameter k by belonging to a
functional subspace of dimensionality pa, spanned by the
mutually orthogonal functions given by Eq. 7 which con-
sists of polynomials bivariate variables (see Appendix A).
These functions form a functional basis, and along with
constant matrices Ai, j constitute the corresponding, fully
parametrized, projection matrices Ai(k).

The VFP-VAR model is parametrized in terms of the pa-
rameter vector to be estimated in the following manner:

θ̂ , vec
([

A1,1 A1,2 . . .Ana,pa
]T) (20)

where vec(·) designates the operator that transforms the
indicated matrix into a vector by stacking its columns.

3Bold–face upper/lower case symbols designate matrix/column–
vector quantities, respectively. Matrix transposition is indicated by the
superscript T .
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The VFP-VAR model formulation in linear regression
form can be written as:

yk[t] =
[
Is⊗ϕ

T
k [t]⊗gT (k)

]
·θ + ek[t]

yk[t] = φ
T
k [t] ·θ + ek[t]

where:
Is is the identity matrix of dimension s× s

ϕk[t],
[
yT
k[t−1] . . .yT

k[t−na]
]T
(na×s)×1

g(k),
[
G1(k) . . .Gpa(k)

]T
pa×1

θ , vec
([

A1,1 A1,2 . . .Ana,pa
]T)

(na×s×pa)×1

(21)

Pooling together the expressions of the VFP-VAR
model corresponding to all vector operating parame-
ters k (k1,1,k1,2, . . . ,kK1,K2) considered in the simulation
yields similar form as Eq. 10. Next, substituting the data
for t = 1,2, . . . ,N as before results in the expression sim-
ilar to Eq. 11.

Estimation of the model parameters using the above lin-
ear regression framework follows in the similar way as
scalar models given by Eq. 13. Model structure selection
is also performed in the same two-step approach: (i) De-
termination of VAR order with data sets of single cross-
sections based on the model selection criteria (Ref. 18)
and (ii) functional basis dimensionality selections based
on BIC minimization for the selected VAR order. Note
that for vector models the term, σ2e(k) in Eq. 16 is re-
placed by the trace of Σ(k), the residual covariance ma-
trix for a single cross-section. And, to determine the fit
of the estimated models by RSS/SSS criteria given by
Eq. 17, the Frobenius norm of the vector of residual, ek[t]
and signal, yk[t] have been used.

RESIDUAL-BASED FAULT DETECTION
AND IDENTIFICATION

For tackling fault detection and identification, model
residual based methods use functions of the residual se-
quences (known as characteristic quantity, Q) which are
obtained by driving the current signal(s) (Zu) through the
models estimated in the baseline phase for the healthy air-
craft (Mo) and different fault types (M1,M2,M6). The key
idea is that the residual sequence obtained by a model
that truly reflects the current state of aircraft possesses
certain distinct properties which are distinguishable from
that obtained from the other models. Note that the func-
tional parameters or flight conditions are substituted in
the functional part of VFP models to obtain the corre-
sponding AR/VAR models for that particular flight con-
dition, before filtering the current signals through them.

Let MV designate the model representing the structure
in its V state (V = 0,1,2,6), where “0” denotes healthy
state and “1,2,6” signify the rotor which has failed in the
faulty state. The residual series obtained by driving the
current signal(s) (Zu) through each one of the aforemen-
tioned models are designated as e0u[t],e1u[t],e2u[t],e6u[t]
and are characterized by variances σ2

0u,σ
2
1u,σ

2
2u,σ

2
6u re-

spectively. The characteristic quantity can be the variance
or the whiteness of the residual sequence as discussed in
the following sections. The first subscript designates the
model employed, while the second the aircraft state cor-
responding to the currently used response signal(s). The
characteristic quantities obtained from the corresponding
residual series are designated as Q0u,Q1u,Q2u,Q6u. The
characteristic quantities obtained using the baseline data
records are designated as QVV (V = 0,1,2,6).

Residual Variance Method

In this method, the characteristic quantity used for fault
detection is the residual variance (Ref. 7). Fault detec-
tion is based on the fact that the residual series eou[t],
obtained by driving the current signals, Zu through the
model, Mo (corresponding to the healthy state) should
be characterized by variance σ2

ou = σ2
oo which becomes

minimal if and only if the current state of the aircraft is
healthy (Zu = Zo). Fault detection is based on the follow-
ing hypothesis testing procedure:

H0 : σ2
ou ≤ σ2

oo (null hypothesis – healthy aircraft)
H1 : σ2

ou > σ2
oo (alternate hypothesis – rotor failure)

(22)
Under the null (Ho) hypothesis, the residuals eou[t] are
(just like the residuals eoo[t]), iid Gaussian with zero
mean and variance σ2

oo. Hence the quantities Nu · σ̂2
ou/σ2

oo
and (No−d) · σ̂2

oo/σ2
oo follow central χ2 distribution with

Nu and No−d degrees of freedom, respectively (as sums
of squares of independent standardized Gaussian random
variables)4. No and Nu designate the number of samples
used in estimating the residual variance in the healthy and
current cases, respectively (typically No = Nu = N), and
d designates the dimensionality of the estimated model
parameter vector. Nu and No should be adjusted to Nu−1
and No− 1, respectively, if each estimated mean is sub-
tracted from each residual sequence. Consequently, the
following statistic follows a Fischer distribution (denoted
by F) with (Nu,No − d) degrees of freedom as the ra-
tio of two independent and normalized χ2 random vari-

4A hat designates estimator/estimate of the indicated quantity; for
instance σ̂ is an estimator/estimate of σ .
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ables (Ref. 7):

Under H0 : F =

Nu σ̂2
ou

Nu σ2
oo

(No−d) σ̂2
oo

(No−d) σ2
oo

=
σ̂2

ou

σ̂2
oo

(23)

The following hypothesis test is thus constructed at the α

type I (false alarm) risk level:

F ≤ f1−α(Nu,No−d) =⇒ H0 accepted (healthy aircraft)
Else =⇒ H1 accepted (rotor failure)

(24)
where, f1−α(Nu,No − d) designates the corresponding
Fischer distribution’s (1−α) critical point.

Fault identification may be similarly achieved via pair-
wise tests of the form:

H0 : σ2
Xu ≤ σ2

XX (aircraft under Rotor X failure)
H1 : σ2

ou > σ2
oo (aircraft not under Rotor X failure)

(25)

Note that the baseline residual variance, σ2
VV (k) (V =

0,1,2,6) are available only for the modelled cross-
sections, ki, j∀. However, during online monitoring “un-
modelled”, intermediate operating conditions may be en-
countered. The model representing the dynamics at that
particular condition will be obtained by substituting the
values of forward velocity and gross weight into the func-
tional basis. But, if there is no baseline data set available
for this particular operating values, the baseline resid-
ual sequence, required for statistical comparison with the
current residual sequence, cannot be obtained. The afore-
mentioned problem can be tackled via the the projec-
tion of the known variance values onto bivariate poly-
nomial subspaces, similar to Eq. 7, in order to calculate
the residual variance for any intermediate operating con-
dition without having a corresponding baseline data set,
thus facilitating FDI within the entire operating range.

Residual Uncorrelatedness Method

This method is based on the fact that the residual se-
ries eou[t], obtained by driving the current signals (Zu)
through the model (M0), is uncorrelated (white) if and
only if the aircraft is currently in its healthy condi-
tion (Ref. 7). Fault detection is performed by the fol-
lowing hypothesis testing:

H0 : ρ[τ] = 0 (null hypothesis – healthy aircraft)
H1 : ρ[τ] 6= 0 (alternate hypothesis – rotor failure)

(26)
where ρ[τ] is the normalized autocorrelation function
(ρxx[τ] = γxx[τ]/γxx[0]) of the residual sequence eou[t].

Therefore, the characteristic quantity for fault detection
by this method is

[
ρ[1] ρ[2] ρ[3] . . . ρ[τ]

]T . For this

method, r is the design variable for the statistical test,
which denotes the maximum lag in time (τ) for which
the normalized ACFs are being accounted for. Under the
null hypothesis (H0), the residuals eou[t] are iid Gaussian
with zero mean and the test statistic χ2

ρ follows a χ2 dis-
tribution with r degrees of freedom, given as:

Under H0 : χ
2
ρ = N(N +2) ·

r

∑
τ=1

(N− τ)−1 · ρ̂[τ]2 ∼ χ
2(r)

(27)
where ρ̂[τ] denotes the estimator of ρ[τ].

Statistical decision making is achieved by the following
test for α (false alarm) risk level:

χ2
ρ ≤ χ2

1−α
(r) =⇒ H0 is accepted (healthy aircraft)

Else =⇒ H1 is accepted (rotor failure)
(28)

where χ2
1−α

(r) denotes the χ2 distribution’s 1−α critical
point.

Fault identification is achieved by similarly examining
which one of the eVu[t] (V = 1,2,6) residual series is sta-
tistically uncorrelated.

RESULTS AND DISCUSSION

Data Generation

Flight simulation for the hexacopter was performed at op-
erating ranges specified in Table 1 with white noise exci-
tation under severe turbulence according to the Dryden
model. Figures 5 and 6 show pitch time histories for
the hexacopter, for cases of healthy flight and rotor 1
failure. For the simulation results presented, rotor fail-
ure occurs at t = 10 s, indicated by the vertical dashed
line. It should be noted that due to failure, the signals
show a sharp transient response before settling down to
a controller-compensated steady state. The failure detec-
tion takes place in the transient part of the signal, whereas
the failure identification takes places in the fault compen-
sated steady state, since the models are suitable for mod-
elling stationary signals only.

Some observations on how the roll, pitch and yaw signals
deviate due to failure determined by the dynamic knowl-
edge of the hexacopter is discussed in Ref. 18. This paper
demonstrates the indicative results for severe level of tur-
bulence only, while results from moderate and low levels
of turbulence will be presented in a subsequent publica-
tion.

Non-Parametric Analysis of signals

The roll and pitch signals of the healthy aircraft ob-
tained for some particular cross-section (a point in the
grid of forward velocity and gross weight) were analysed
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Figure 6: Pitch Time History, Rotor 1 failure

(since the important dynamics of a hexacopter lies in the
lateral and longitudinal modes) by Welch method with
N = 80,000 samples (Fs = 1000 Hz, window size of 800,
nfft of 2000, overlap of 90%; Matlab function pwelch.m).
The system dynamics are observed to lie in the range of
0.02− 2 Hz. Hence, the signals were downsampled to a
sampling frequency of Fs = 10 Hz such that the frequency
range of interest is 0−5 Hz.

Next, the Welch-based non-parametric analysis for the
downsampled signals for a few indicative cross-sections
were repeated to observe whether there is any effect of the
operating conditions on system dynamics. The parame-
ters used were as follows: N = 800 samples, window size
of 200, nfft equal to the window size, and overlap of 95%.
This was performed to justify the need for complex mod-
els that can represent the change in dynamics of the hexa-
copter due to different forward velocity and gross weight.
Table 2 shows the there is change in the 1st mode for both
lateral and longitudinal modes of the healthy aircraft with
change in forward velocity, but not with gross weight.

Table 2: Effect of operating conditions on system modes

Gross Forward Velocity (m/s)
Weight (kg) 2 7 12

2 0.6/0.5 0.8/ 0.4 0.85/0.8
3 0.6/0.5 0.8/0.4 0.85/0.8
5 0.6/0.5 0.8/0.4 0.85/0.8

All the frequencies are given in Hz
1st longitudinal/lateral mode (pitch/ roll signals)

Scalar VFP-AR model based Fault Detection and
Identification

Model Identification Conventional AR models repre-
senting the healthy aircraft are obtained through stan-
dard identification procedures (Refs. 18,20) based on ob-
tained pitch signals (80 s, N = 800 samples long, Matlab
function ar.m) for some cross-sections. This leads to an
AR(15) model, which is used as a reference and for pro-
viding approximate orders for the corresponding “global”
models representing the aircraft dynamics for the entire
range.

The vector functionally pooled model for the healthy air-
craft is based on signals of the same length obtained from
a total of K1×K2 = 11×4 = 44 simulations, for 11 val-
ues of forward speed and 9 values of gross weight cov-
ering the entire admissible operating range. Functional
basis order selection starts with the maximum functional
search space consisting of 1035 Chebyshev Type II bi-
variate polynomial basis functions (see Appendix A). The
final functional basis order selected was 3 and 1 (p = 9)
for speed and weight variables, respectively, based on the
minimum BIC criterion (Eq. 16), as depicted in Fig. 7.
This implies that the dynamics of the healthy aircraft
as represented by this model vary in a quadratic fashion
with the forward velocity, but is constant with respect to
the gross weight. This model was validated by checking
the whiteness (uncorrelatedness) and the normality of the
model residuals (Matlab functions acf.m and normplot.m,
respectively) for all the cross-sections (See Appendix B).

Indicative PSD magnitude curves, depicted in Figs. 15a
and 15b (See Appendix C), illustrates that the frequency
spectrum obtained from the healthy aircraft model varies
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Figure 7: VFP-AR Model Structure Selection

with velocity but is constant with the gross weight.
This observation is consistent with the preliminary non-
parametric analysis which also shows no change in dy-
namics with varying gross weight.

The VFP-AR models for different rotor failures esti-
mated with the pitch signal obtained from the post fail-
ure fault-compensated stationary state are identified in a
similar way. But the number of datasets available are
K1 ×K2 = 6× 3 = 18, and therefore functional search
space is limited by the admissible range of operation un-
der rotor failure. The summary of the VFP models esti-
mated for healthy and faulty states are given in Table 3.

Fault Detection and Identification In this section, in-
dicative FDI results based on scalar versions of the vector
functionally pooled time series models utilizing the pitch
signal have been presented. The current pitch signals are
generated at some random but known forward velocity

Table 3: Model identification summary results.

Aircraft Model No. of
State Selected parameters

Healthy VFP-AR(15)9 135
Aircraft VFP-VAR(2)9 162

Rotor 1 VFP-AR(11)4 44
Failure VFP-VAR(3)4 108

Rotor 2 VFP-AR(8)4 32
Failure VFP-VAR(3)7 189

Rotor 6 VFP-AR(7)4 28
Failure VFP-VAR(3)7 189
Scalar models are estimated with pitch signals only
Vector models are estimated with roll, pitch & yaw signals
Model order is denoted in brackets
Functional order is denoted in subscript

and gross weight (within the admissible operating range)
under ambient excitation due to severe turbulence only.
The model parameters for the healthy AR model are cal-
culated by substituting the known values of k = [k1 k2]
in the functional basis of the VFP-AR model for healthy
aircraft. Next, the current signals were driven through
this identified healthy AR model for that particular op-
erating condition to generate residual sequences. Fault
detection was attempted through characteristic quantities
which are functions of the residual sequences, as previ-
ously discussed.

Similarly, in the event of a rotor fault, the steady state
residuals are generated from each of the VFP-AR mod-
els for rotor failure, parametrized as AR models for
the current operating condition. Fault identification
was achieved using their properties for decision making
through multiple binary hypothesis tests. In the current
study, the fault cases considered are related to failure of
rotor 1, 2 and 6. Therefore, there are 3 fault hypotheses
and the corresponding hypothesis tests have to be carried
out simultaneously.

Residual Variance Method Fault detection is achieved
in an online, real-time manner through taking a 5 s (N =
50 samples) moving window of the current signal with
the window being updated every 0.1 s. Then, the win-
dowed data is filtered through the healthy model esti-
mated for the current operating condition to generate the
residual sequence of the same length. The variance of
the generated residuals is statistically compared to the
corresponding baseline residual variance. The baseline
residual variance for the current operating condition is
estimated from a bivariate polynomials (Eq. 7) model fit-
ted to the residual variances of the modelled operating
conditions, with the model structure being selected by
RSS/SSS criteria. The critical limit is determined from
the F distribution’s (1−α) critical limit for (50,35) de-
grees of freedom. The hypothesis test is conducted at
the α (false alarm) risk level of 10−3 and indicative re-
sults for different states of the aircraft (healthy, front, and
side rotor failure) flying at 3.5 m/s and having a gross
weight of 3.75 kg are presented in Fig. 8a. In both the
figures, the vertical black and the horizontal red dashed
lines represent the time of rotor failure and the critical
limit (threshold), respectively. A fault is detected when
the F statistic exceeds the critical limit at the designated
type I risk level.

Since a minimum number of 50 samples are required so
that the test is statistically significant with minimum false
alarms, the test starts at 5 s. For the current pitch signals
coming from a healthy flight, the test statistics (Eq. 22)
always remain below the critical limit for the test, hence
the null hypothesis (that it is a healthy case) is accepted.
In the case of signals generated from an aircraft with rotor
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Figure 8: Indicative fault detection results based on the pitch residual signals obtained via VFP-AR model of healthy
aircraft. The dashed vertical line represents the time of rotor failure. The dashed red horizontal line indicates the
statistical threshold at the respective α risk levels. A fault is detected when the statistic exceeds the threshold.
(a) Residual variance method; operating condition: 3.5 m/s, 3.75 kg and α = 10−2 (b) Residual uncorrelatedness
method; operating condition: 4.5 m/s, 2.5 kg and α = 10−6.
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Figure 9: Indicative fault identification results based on the pitch residual signals obtained via VFP-AR model of
different rotor failures. The dashed black horizontal line indicates the statistical threshold at the respective α risk
levels. (a) Residual variance method; operating condition: 7.5 m/s, 2.5 kg and α = 0.25 (b) Residual uncorrelatedness
method; operating condition: 8.5 m/s, 3.5 kg and α = 10−3.

failure, the fault detection at the time of failure is imme-
diate (within 0.1 s, which is the window update interval),
showing a violation of the critical limit. Thus, the alter-
nate hypothesis of faulty aircraft is accepted.

Post online fault detection, the variance of the signals is
monitored until steady state is reached (Ref. 20). For
fault identification, the current signals, under the fault-
compensated state of the aircraft, of length 20 s (N = 200
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samples) updated every 1 s, are filtered through the cor-
responding baseline scalar models for rotor 1, 2, and 6
failure, parametrized for the current operating condition.
The residual variances denoted as σ2

1u, σ2
2u and σ2

6u, re-
spectively, are statistically compared with their nominal
values, namely σ2

11, σ2
22 and σ2

66. Note that each of these
baseline values are estimated via bivariate polynomial
models fitted to the residual variances for modelled op-
erating conditions in the baseline phase. Indicative fault
identification results for a single time window of pitch
signals obtained under severe turbulence at 7.5 m/s and
2.5 kg are presented in Fig. 9a. When the test statistic of
the residual obtained from M1 lies below the critical limit
constructed at the α (false alarm) risk level of 0.25, and
exceeds it for the residuals obtained from the other two
models (M2 and M6), the fault is correctly identified as
rotor 1 failure. Fault identification follows for the other
types of failure in similar way. However, if the test statis-
tics obtained from two or more models lie below the crit-
ical limit, then confusion in identifying the faulty rotor is
implied. If all the test statistics exceed the critical limit,
no decision is made. For side rotor (2 and 6) failure sig-
nals, in Fig. 9a the test statistics obtained from all three
rotor failure models lie below the critical limit. This im-
plies multiple decision, and hence misclassification error
between the three rotors.

Residual Uncorrelatedness Method Online fault de-
tection via the residual uncorrelatedness method is per-
formed in a similar manner, with the same window length
and update interval, as discussed in the residual variance
method. In this method, the test statistics (Eq. 26) based
on the autocorrelation function of the residuals generated
from the current pitch signals. After a preliminary in-
vestigation of the effect of the maximum lag τ on the
method’s performance, a value of 30 has been chosen
as adequate. Hence, the (1−α) critical point of a χ2

distribution with 30 degrees of freedom denotes the crit-
ical limit for the statistical hypothesis testing. Figure 8b
shows indicative results for different aircraft states for
healthy, front and side rotor failure cases, respectively, at
the 10−1 risk level α . The test signals are obtained under
severe turbulence, forward velocity of 4.5 m/s, and gross
weight 2.5 kg. The test statistics crossing over the critical
limit (dashed red line) denote rejection of the null hy-
pothesis, thus declaring fault detection. Due to the fault-
induced sharp transients in the signals, the fault detection
is immediate.

After the fault is compensated for by the controller, pitch
signals of length 20 s (N = 200 samples), updated ev-
ery 1 s are filtered through faulty models M1,M2 and M6
to generate residuals e1u[t], e2u[t] and e6u[t], respectively.
The autocorrelation function of the residual sequences
with maximum lag τ = 30 has been considered as the
test statistic in order to classify faults. The critical limit

of a χ2 distribution with 30 degrees of freedom for the
statistical hypothesis testing has been constructed at the
α (false alarm) risk level of 10−3.

The results obtained from a single window of 20 s for dif-
ferent rotor failures signals at operating conditions, 8.5
m/s and 3.5 kg are shown in Fig. 9b. It can be observed
that when a pitch signal from rotor 1 failure is filtered
through M1, the residuals are uncorrelated, and they are
correlated if obtained from models M2 and M6, as evi-
dent for the test statistic being below the critical limit in
the former and exceeding it in the latter two cases. This
method also faces significant challenges in tackling fault
identification as evident from Fig. 8b, where in the cases
of rotor 2 and 6 failures, the decisions made are front ro-
tor failure and no decision, respectively.

Vector VFP-VAR model based Fault Detection and
Identification

Model Identification Vector functionally pooled - vec-
tor (multivariate) AutoRegressive identification of the
healthy aircraft has been based on 80 s (N = 800 samples
at sampling frequency 10 Hz) data sets for the roll, pitch,
and yaw signals, with white noise excitation and ambi-
ent excitation due to turbulence (assumed to be white)
generated from 44 flight simulations covering the entire
operating range. Model VFP-VAR(2)9 has been selected
to represent healthy dynamics over the entire operating
range by following the same procedure as the scalar coun-
terpart:(1) Vector AutoRegressive order has been chosen
by BIC (Ref. 18) as VAR(2) based on datasets from a few
cross-sections (2) Functional basis order selected from
the same maximum functional search via minimum BIC
(Eq. 16). According to Fig. 10 the functional basis dime-
sionality is chosen as (3,1) (each functional subspace con-
sists of p = 9 Chebyshev Type II two-dimensional poly-
nomials), depicting quadratic and constant relation with
respect to velocity and weight respectively. The chosen
model is validated by examining whether the model resid-
uals are normal and uncorrelated for all cross-sections
(See Appendix B).

The vector counterpart of VFP models for rotor failures
are identified in a similar fashion but for the limited op-
erating range and the details are given in Table 3.

Fault Detection and Identification In this section, few
indicative FDI results based on vector (multivariate) ver-
sions of the vector functionally pooled time series mod-
els are presented. The test signals (ordered roll, pitch,
yaw) are acquired for flight simulation under severe tur-
bulence for which the operating conditions are known.
The model parameters for the healthy VAR model are
calculated by substituting the known values of forward
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Figure 10: VFP-VAR Model Structure Selection

velocity and gross weights in the functional basis of the
VFP-VAR model for the healthy aircraft. Next, the cur-
rent signals driven through this identified healthy VAR
model for that particular operating condition yield three
sets of residual sequences. The residual based fault de-
tection is performed by the statistical comparison of each
characteristic quantity obtained via the current residual
sequence with the corresponding baseline quantity. In
other words, the characteristic quantity obtained from the
current roll residual sequence is compared to the baseline
quantity obtained from the roll residual sequence and so
on. Therefore, the statistical hypothesis testing is per-
formed thrice for a particular time window (duration of
signal measured in number of samples).

For fault identification, the fault compensated signals
are filtered through the three baseline faulty models, re-
parametrized for the current operating conditions to gen-
erate three sets of sequences comprising of roll, pitch and
yaw residuals. Binary hypothesis tests are designed on
the properties of these residuals in order to determine the
failed rotor.

Residual Variance Method The current 5-second-long
signals (N = 50 samples sampled at 10 Hz frequency),
with a time window update of 0.1 s, are driven through
the VAR(2) model obtained from forward velocity and
gross weight substitution into the VFP-VAR(2)9 model
for healthy aircraft to generate three sets of residual se-
quences. Fault detection is achieved through three par-
allel statistical hypotheses testing of the variance of the
current residuals and the variance of the baseline resid-
uals (Eq. 22). The baseline residuals for the current op-
erating condition were estimated from “modelled” roll,
pitch, and yaw residuals fitted with bivariate polynomi-
als. The critical limit is determined from the F distribu-
tion’s (1−α) critical limit for (50,44) degrees of free-

dom (the total number of estimated parameters for the
3-variate VAR(2) model is 18). The statistical hypothesis
test is conducted at the α (false alarm) risk level of 10−1

to minimize the false alarms. Indicative fault detection re-
sults for different states of the aircraft with gross weight
2.75 kg and flying at 6.5 m/s are presented in Fig. 11a.

To collect a minimum of 50 samples for testing, the test
starts from 5 s. For current signals obtained from the
healthy flight, the test statistics for each attitude signal
fall below the critical limit denoting acceptance of the
null hypothesis. A fault is detected whenever any of the
test statistics violate the critical limit. With front and side
rotor failure at 10 s, fault detection, which is evident from
all three test statistics exceeding the critical limit, is im-
mediate.

Post fault-compensation, signals of length 20 s (N = 200
samples), updated every 1 s have been filtered through
the VAR models (for rotor failure, M1, M2 and M6),
reparametrized for current operating conditions to find
the residual variances, σ2

1u, σ2
2u and σ2

6u respectively (for
roll,pitch and yaw residuals). These are compared statis-
tically to the baseline residual variances σ2

11, σ2
22 and σ2

66,
obtained from three bivariate polynomial models fitted to
the roll, pitch, and yaw residuals obtained at specific op-
erating conditions while identifying the three rotor failure
VFP-VAR model models in the baseline phase. The sta-
tistical hypothesis test is designed at the α (false alarm)
risk level of 10−2 to minimize the confusion between the
various rotor failures.

Indicative results for a single time window at 5.5 m/s and
3.5 kg are presented in Figs. 12a to 12c. When all the test
statistics for the roll, pitch, and yaw residual sequences
obtained from model M1 are within the critical limit, the
fault is correctly classified as rotor 1 failure, as indicated
in Fig. 12a. If any of the three statistics exceeds the crit-
ical limit, it is implied that the current faulty state is not
related to rotor failure 1. Similarly, correct rotor failure
identification has been made with residuals obtained from
models M2 and M6, evident in Figs. 12b and 12c, respec-
tively. If the test statistics of the residuals obtained from
more than one model lie below the critical limit, it im-
plies that there is confusion between those types of fail-
ure. Conversely, if all the test residuals from all the mod-
els exceed the critical limit, no decision is made on the
type of rotor failure. As evident from the design of the
test, multiple decisions or no decisions are possible for
a single window of the signals. It can be observed that
vector models perform better than scalar counterparts in
failure classification, because they account for the cross-
correlation between the multivariate signals.

Residual Uncorrelatedness Method Online fault detec-
tion by residual uncorrelatedness based on the identified
vector model for current operating condition is performed
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Figure 11: Indicative fault detection results based on the roll, pitch and yaw residual signals obtained via VFP-VAR
model of healthy aircraft. The dashed vertical line represents the time of rotor failure. The dashed red horizontal
line indicates the statistical threshold at the respective α risk levels. A fault is detected when nay of the statistics
exceeds the threshold. (a) Residual variance method; operating condition: 6.5 m/s, 2.75 kg and α = 10−1 (b) Residual
uncorrelatedness method; operating condition: 8.5 m/s, 2.25 kg and α = 10−3.
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Model: Rotor 6 failure
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Figure 12: Indicative fault identification results by residual variance method based on the roll, pitch and yaw residual
signals obtained via VFP-VAR model of different rotor failures at operating condition of 5.5 m/s and 3.5 kg. The
dashed black horizontal line indicates the statistical threshold at the respective α = 10−2 risk level.

with 5 s (N = 50 samples) window length and update in-
terval of 0.1 s for each residual sequence. In this method,
the characteristic quantity is the autocorrelation function
of the residuals with a maximum lag τ = 8. The critical
limit of the statistical hypothesis test is obtained as the
(1−α) critical point of a χ2 distribution with 8 degrees

of freedom. Figure 11b shows three parallel hypothesis
tests on roll, pitch, and yaw residuals obtained from 2.25
kg aircraft flying at 8.5 m/s and severe turbulence for dif-
ferent states of the aircraft: healthy aircraft, front, and
side rotor failure, respectively, at the α = 10−3 risk level.

In the healthy case, the test statistic for all the three sig-
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(a) Front rotor (1) failure
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Model: Rotor 6 failure
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Figure 13: Indicative fault identification results by residual uncorrelatedness method based on the roll, pitch and yaw
residual signals obtained via VFP-VAR model of different rotor failures at operating condition of 4.5 m/s and 3.25 kg.
The dashed black horizontal line indicates the statistical threshold at the respective α = 0.05 risk level.

nals is lower than the the critical limit, correctly declaring
the system as healthy. For the front, and side rotor failure
at 10 s, fault detection is fairly fast with any one of the
test statistics exceeding the critical limit.

After the fault is compensated for by the controller, sig-
nals of length 20 s (N = 200 samples), updated every 1 s
have been filtered through faulty models M1,M2 and M6
to generate residual sequences e1u[t], e2u[t] and e6u[t], re-
spectively, each containing roll, pitch, and yaw residuals.
The autocorrelation function of each component of the
residual sequences with maximum lag τ = 10 has been
considered as the test statistic to classify faults. Since the
computation time required to classify failure is more than
0.3 s, the window update interval is kept at 1 s.

The results obtained from a single window of 20 s are
shown in Figs. 13a through 13c. Figure 13a shows the
residuals e1u[t] are uncorrelated ( below (1−α) critical
limit of a χ2 distribution with 10 degrees of freedom).
This signifies that the model (M1) represents the dynam-
ics of current state correctly and the fault is classified as
failure of rotor 1. The models which do not represent the
current aircraft state dynamics have correlated residuals
(exceed the critical limit). Similarly, Figs. 13b and 13c
show correct identification of the failure for rotors 2 and
6, respectively. This method can correctly identify ro-
tor failures with vector models, in contrast to the scalar
model approach.

CONCLUSIONS

A unified stochastic framework for rotor failure detection
and identification in multicopters based on aircraft atti-
tude signals has been developed. The method, capable of
FDI under different operating conditions, turbulence, and
uncertainty, has been based on the novel extended class of
vector-dependent functionally pooled (VFP) models and
proper statistical decision making schemes. “Global” sta-
tistical time series models, in the form of Vector Func-
tionally Pooled AutoRegressive models (scalar and vec-
tor), can represent the hexacopter dynamics under var-
ious operating conditions in the presence of turbulence
and uncertainty. These models, identified for healthy and
different rotor failure scenarios, form the cornerstone of
this residual based FDI technique. The theory for resid-
ual properties (variance and uncorrelatedness) based sta-
tistical hypothesis tests is discussed. Online rotor failure
detection followed by identification with these methods
coupled with the univariate and multivariate models has
been demonstrated for a few test cases. The important
conclusions from the study are summarized below:

• This study, with the proof-of-concept application,
demonstrates effective fault detection and identifi-
cation in multicopters flying under any condition
within the operating range, turbulence, and uncer-
tainty.

• The “global” statistical time series models based on
aircraft response (scalar or vector) signals only, ob-
tained under (i) ambient excitation due to turbulence
and (ii) external white noise excitation, can fully
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represent the important aircraft dynamics for differ-
ent health status for the entire operating range.

• Simpler non–parametric approaches like the Power
Spectral Density provide evidence of changing air-
craft dynamics with different operating conditions.
As the primary step of inspecting the collected sig-
nals, it justifies the need the for more complex func-
tionally pooled models. It also provides validation
of the final model parameters’ dependencies on the
forward velocity and gross weight.

• Both scalar and vector statistical time series meth-
ods have shown remarkable results in immediately
detecting faults, with the vector methods achieving
improved performance in case of fault classification
with post-failure stationary signals.

• An impressive feat of these methods is that they
are capable of distinguishing the faulty state from
healthy aircraft even when the aircraft attitude sig-
nals have been compensated for and returned to a
steady state by the controller after failure. Note that
only the aircraft response signals have been utilized
in this study without any knowledge of controller ef-
fort. Hence, parsimony of information while main-
taining effectiveness of FDI has been achieved.

• Residual based rotor FDI under “unmodelled” or in-
termediate operating conditions, that is conditions
not belonging to any of the considered operating
conditions in training data (and thus not modelled
in the baseline phase) has been successfully per-
formed. Moreover, the baseline residual proper-
ties, on which these methods mainly rely on, have
been estimated for “unmodelled” operating condi-
tions, without corresponding baseline data. This has
a substantial impact on the amount of training data
needed to be generated in baseline phase.

• Another important achievement is that rotor FDI is
possible without the need for active external excita-
tion during the flight. This is established on the basis
of the fact that the test data has been generated with
only ambient excitation due to turbulence, in con-
trast to the training data having an active excitation
too.

• In future, the rotor failure models will be appended
with functional dependence on amount of rotor
degradation, in order to be able to quantify the faults
along with detection and classification. Also, sparse
grid of training data with respect to different oper-
ating conditions coupled with orthogonal splines as
basis functions will be explored. This will ease the
limitation of uniformly spaced signals used in train-
ing the models.
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APPENDIX

A. Bivariate Polynomials

Bivariate (two-dimensional) orthogonal polynomials may
be obtained as tensor products from their correspond-
ing (Chebyshev, Legendre, Jacobi, or other (Refs. 30–
32)) univariate counterparts. For example, the bivariate
Chebyshev orthogonal polynomials have the following
form:

Pmn(x,y) = Pm(x) ·Pn(y)

(x,y) ∈ [−1,1]× [−1,1]⊂ R2 (29)

with Pmn the bivariate Chebyshev polynomial of total de-
gree mn and Pm(x),Pn(y) the univariate Chebyshev poly-
nomials of degrees m,n, respectively.

Construction of bivariate polynomial orthogonal basis
(Refs. 31, 32)

A polynomial orthogonal basis of maximum degree mn
contains a total of 1

2 (mn+1)(mn+2) basis functions ob-
tained as follows:

1. Constant basis function P0,0
2. Linear basis functions P1,0,P0,1
3. Quadratic basis functions P2,0,P1,1,P0,2
4. Cubic basis functions P3,0,P2,1,P1,2,P0,3
...
mn+1. degree mn basis functions Pmn,0,Pmn−1,1, . . . ,P1,mn−1,P0,mn

The univariate polynomials used in this study in order to
obtain their bivariate counterparts are the shifted Cheby-
shev polynomials of the second kind (Type II Cheby-
shev polynomials), which belong to the broader family of
Chebyshev orthogonal polynomials. These polynomials
obey the following recurrence relation:

a1,nGn+1(x) = (a2,n +a3,nx)Gn(x)−a4,nGn−1(x)

x ∈ [0,1]⊂ R
(30)

with a1,n = a4,n = 1,a2,n = −2,a3,n = 4, and G0(x) =
0,G1(x) = 1.

Hence, the first five shifted Chebyshev polynomials of the
second kind are:

P0 = 1
P1 =−1+2x

P2 = 1−8x+8x2

P3 =−1+18x−48x2 +32x3

P4 = 1−32x+160x2−256x3 +128x4

(31)

In the present framework, where the two variables are for-
ward velocity (k1) and gross weight (k2), the following
variable selections are made:

x ∈[0,1]⊂ R, x = k1/k1
max

y ∈[0,1]⊂ R, y = k2/k2
max

(32)

B. Model Validation

The Q-statistics is given by
Q=N(N+2) ·∑r

τ=1(N−τ)−1 · ρ̂[τ]2∼ χ2(r), where ρ̂[τ]
designates the residual series normalized autocorrelation
at lag, τ and it follows a χ2(r) distribution with ’r’ de-
grees of freedom. In Figs. 14a and 14b the red dashed
line is 99% confidence limit (α = 0.01) for χ2(50) dis-
tribution. If the Q-statistics lie below the (1−α) criti-
cal limit of the distribution, the residuals are considered
to be white or uncorrelatedness. The models are vali-
dated based on the fact that the models correctly repre-
senting the system dynamics should generate a white (un-
correlated) residual sequences for all cross-sections. In
Figs. 14a and 14b the Q-statistics of all the cross-sections
have been presented in grids, with the forward velocity
shown in the top and gross weight shown in the right.
Since, vector models generate three residuals, namely
roll, pitch, and yaw residuals, the grids in Fig. 14b have
three bars representing the Q-statistics.
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(a) VFP-AR model
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(b) VFP-VAR model

Figure 14: VFP Model validation of healthy by examination of residual uncorrelatedness for all-cross sections (a) AR
model estimated with Pitch signals only and (b) VAR model estimated with Roll, Pitch and Yaw signals. The red
horizontal dashed line is the 99% confidence limit.
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C. Power Spectral Density

The Figs. 15a and 15b, shows the indicative PSD mag-
nitude curves obtained from VFP-AR(15)9 model of a
healthy aircraft based on pitch signals. It can be observed
that the dynamics of the healthy aircraft changes with the
forward velocity but is constant with the gross weight.

(a) Frequency change with forward velocity

(b) Frequency change with gross weight

Figure 15: VFP-AR(15)9 based PSD magnitude versus
frequency and (a) forward velocity and (b) gross weight
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