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ABSTRACT
A robust framework for fault detection and identification of rotor degradation in multicopters while effectively rejecting
the effects of gusts is introduced. The rotor fault detection and identification methods employed in this study are based
on excitation-response signals of the aircraft under ambient turbulence to distinguish between an aircraft response to
gusts and rotor faults. A concise overview of the development of statistical time series model for healthy aircraft using
the aircraft attitudes as the output and controller commands as the input is presented. This model is utilized to extract
quality features for training a simple neural network to perform effective online rotor fault detection and identification
in a hexacopter exceptional speed of making a decision and accuracy of fault classification. It is shown that using
a statistical time series model assisted neural network employed for online monitoring is capable of rejecting gusts,
sensitive to even 20% rotor degradation and achieves fault detection and identification in less than 2 s after the fault
with an accuracy over 99%.

NOTATION

α : Type I risk level
β : Type II risk level
γ : Autocorrelation
τ : Lag
σ2 : Residual variance
Σ : Residual covariance matrix
ARX : AutoRegressive with eXogenous excitation
BIC : Bayesian Information Criterion
CCF : Cross-Covariance Function
E{·} : Expected value
FDI : Fault Detection and Identification
iid : identically independently distributed
LS : Least Squares
PE : Prediction Error
PSD : Power Spectral Density
RSS : Residual Sum of Squares
SPP : Samples Per Parameter
SPRT : Sequential Probability Ratio Test
SSS : Signal Sum of Squares
UCL : Upper Control Limit
LCL : Lower Control Limit
VAR : Vector AutoRegressive
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INTRODUCTION

Multicopters, being capable of hovering and vertical take-
off and landing, have attracted the interest of the commu-
nity with respect to both commercial and defense appli-
cations over the last decade. Given the increasing interest
and widespread use of these vehicles in a number of im-
portant arenas such as Urban air Mobility (UAM), early
fault detection and identification (FDI) of such systems
are critical in order to ensure and improve their over-
all safety and reliability. Rotorcraft are complex sys-
tems that exhibit strong dynamic coupling between ro-
tors, fuselage, and control inputs, as well as time-varying
and cyclo-stationary behavior. As a result, they face cer-
tain system modeling and fault detection and identifica-
tion challenges that are not present in fixed-wing aircraft.
These issues, as well as potential solutions, have been ex-
plored in the recent literature.

An algorithm for online detection of motor failure us-
ing only inertial measurements and control allocation
by an exact redistributed pseudo-inverse method for oc-
tacopters has been demonstrated by Frangenberg et al.
(Ref. 1). Heredia and Ollero (Ref. 2) have addressed sen-
sor fault identification in small autonomous helicopters
using Observer/Kalman Filter identification. Fault toler-
ant control for multi-rotors (Refs. 3–6), as well as var-
ious fault diagnosis methods such as analytical models,
signal processing, and knowledge-based approaches for
helicopters have also been proposed (Ref. 7).
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A hybrid FDI algorithm comprising of a bank of
continuous-time residual generators and a discrete-event
system (DES) fault diagnoser have been developed in
Ref. 8 to distinguish the effects of disturbances such as
gusts from faults without compromising the detection of
incipient faults for a network of unmanned vehicles. An
actuator fault-tolerant controller with active disturbance
rejection based on an extended state observer and non-
linear compensation able to reject gusts and measurement
noises has been developed for attitude control of quad-
copters (Ref. 9).

Statistical time series methods have been used to detect
actuator, control surface, and sensor faults in aircraft sys-
tems due to their simplicity, efficient handling of uncer-
tainties, no requirement of physics based knowledge, and
applicability to different operating conditions (Refs. 10–
13). Dimogianopoulos et al. (Ref. 14) have demon-
strated the effectiveness of two statistical schemes based
on Pooled Non-Linear AutoRegressive Moving Aver-
age with eXogenous excitation (P-NARMAX) represen-
tations to detect and isolate faults for aircraft systems un-
der different flight conditions, turbulence levels, and fault
types and magnitudes. The first method models the pilot
input and aircraft pitch rate relationship, while the sec-
ond approach models the relationship between horizontal
and vertical acceleration, angle of attack and pitch rate
signals in fixed-wing aircraft.

Fast and accurate rotor failure detection and identifica-
tion by various data-driven and statistical learning meth-
ods for forward flight under different levels of turbu-
lence using aircraft state signals only has been achieved
in 15–17. But, it has been observed that false alarms
have increased to a maximum of 30% under presence
of gusts with the statistical and knowledge-based meth-
ods (Ref. 15). Time-series assisted neural networks de-
scribed in 16 have shown no false alarms under gusts,
which may be attributed to the fact that it has been trained
to raise alarms only under complete rotor failures which
have a considerable transient response compared to re-
sponse due to gusts. Hence, this current study aims at ex-
panding the scope of faults to include incipient faults and
use the corroboration between control signals and out-
put signals to differentiate between rotor degradation and
aircraft response to gusts that may oftentimes mimic the
effects of faults on the vehicle dynamics.

APPROACH

Physics-Based Modeling of Multicopter System

A flight simulation model has been developed for a reg-
ular hexacopter (Fig. 1) using summation of forces and
moments to calculate aircraft accelerations. This model is
the source of simulated data under varying operating and

Figure 1: Schematic representation of a regular hexa-
copter

Figure 2: Controller Block Diagram

environmental conditions, as well as different fault types.
Rotor loads are calculated using Blade Element Theory
coupled with a 3×4 Peters-He finite state dynamic wake
model (Ref. 18). This model allows for the simulation
of abrupt rotor failure by ignoring the failed rotor inflow
states and setting the output rotor forces and moments to
zero.

A feedback controller is implemented on the nonlinear
model to stabilize the aircraft altitude and attitudes, as
well as track desired trajectories written in terms of the
aircraft velocities. This controller is designed at multiple
trim points, with gain scheduling between these points to
improve performance throughout the flight envelope.

The state vector consists of the 12 rigid body states and
is defined in Eq. 1.

x =
{

X Y Z φ θ ψ u v w p q r
}T

(1)
The input vector is comprised of the first four indepen-
dent multirotor controls for collective, roll, pitch and yaw
and is defined in Eq. 2:

u =
{

Ω0 ΩR ΩP ΩY
}T (2)

The control architecture is illustrated in Fig. 2 and de-
tailed in Ref. 3. This control design has been demon-
strated to perform well even in the event of rotor 1,2 or 6
failure, with no adaptation in the control laws themselves.
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Data Generation

A continuous Dryden wind turbulence model (Ref. 19)
has been implemented in the flight simulation model. The
Dryden model is dependent on altitude, length scale, and
turbulence intensity and outputs the linear and angular ve-
locity components of continuous turbulence as spatially
varying stochastic signals. The proper combination of
these parameters determines the fit of the signals to ob-
served turbulence.

In this system, altitude is taken as 5 m and the length
scale as the hub-to-hub distance of the hexacopter, which
is equal to 0.6096 m (2 ft). The forward speed of the
aircraft equal to 5 m/s and gross weight of 2 kg has
been kept constant through the simulations. The data sets
for aircraft states and controller commands are generated
through a series of simulations for different turbulence
levels (light, moderate and severe) for healthy aircraft and
different fault types, such as various levels of degrada-
tion of front and side rotors. Degradation of rotors have
been simulated by decreasing the output speed of the ro-
tor by some ratio of that commanded by the controller.
The rotor faults addressed in this work are degradation
of front rotor (rotor 1), left-side rotor (rotor 2), and right-
side rotor (rotor 6) (see Fig. 1). Next, similar data sets un-
der different magnitude (1- 5 m/s) and directions of gusts
for healthy flight under severe levels of turbulence have
been generated (Ref. 20). The gusts follow a ‘1-cosine’
shape with gradual increase, followed by a steady-state
and gradual decrease (Ref. 21). The gusts have been fur-
ther labelled as intermittent and longer gusts depending
upon the time for which it lasts, the former being shorter
than the latter. In real flight, the time and duration of
gusts can be random in nature depending upon the re-
gion, altitude, and weather conditions. For a summary of
the generated data sets, see Table 1. Note that the number
of data sets in some categories are indicated as ‘(?+†)’,
where ‘∗’ stand for training sets and ‘†’ are the test data.

The time series (signals) of the hexacopter attitudes (air-
craft states) and the control signals for the healthy state,
flight affected by gusts, and different fault levels and
types provide useful insight into the dynamics of the sys-
tem.

General Workframe of Rotor Fault Detection and
Identification

Let Zo be signals that designate the aircraft under con-
sideration in its healthy state, and Z1,Z2 and Z6 the air-
craft under fault of Rotor 1,2, and 6. Zu designates the
unknown (to be determined) state of the aircraft. Statis-
tical learning methods explored in this study are based

on discretized aircraft states signals y[t] 1 and control sig-
nals u[t] (for t = 1,2, . . . ,N). Here, N denotes the number
of samples and the conversion from discrete normalized
time to analog time is based on (t− 1)Ts, with Ts being
the sampling period. The signals are represented by Z and
subscript (o,1,2,6,u) is used to denote the corresponding
state of the aircraft that produced the signals. To avoid
numerical errors in the simulation, the signals are gener-
ated with a sampling frequency of 1000 Hz. Power Spec-
tral Density of the signals show that the frequency range
of interest is 0− 50 Hz. Consequently, they are down-
sampled to a sampling frequency, Fs = 100 Hz.

The signals generated from simulation can analyzed
by parametric or non-parametric statistical methods and
proper models are fitted and validated. Such models are
trained for the cases Zo,Z1,Z2,Z6 in the baseline phase.
Fault detection and identification is performed in the on-
line inspection phase with the information extracted from
the current unknown signals via the baseline models.

STATISTICAL PROCESS CONTROL
CHARTS

Monitoring the statistical properties for aircraft control
and response signals may lead to the early detection
of abnormal conditions, and can also considered as a
generic health monitoring function. When an aircraft ex-
periences abnormal conditions, such as unexpected tur-
bulence, gusts, or other hazardous events such as sys-
tem faults, the mean and/or variance of the aircraft re-
sponse and controller command signals are expected to
change. Data from flight simulation of the multicopter
under healthy condition can be used to establish proper
and robust statistical thresholds under various environ-
mental and flight conditions. To this end, standard statis-
tical tools such as the x̄ and S control charts (Ref. 22) may
be employed to statistically monitor the sample mean and
standard deviation values, respectively. As the statistical
tools referring to quality assurance require serially uncor-
related observations (Ref. 23), an assumption certainly
violated in the case of aircraft states and controller in-
puts, a prior action is necessary. Hence, the measured
signals are modeled via simple Auto-Regressive time-
series models, whose identification is described in detail
in the following paragraph. This type of modeling is nec-
essary to properly account for signal serial correlation.
Following this, the statistical quality assurance tools are
applied on the residuals(one-step-ahead prediction error)
e[t + 1|t]] which satisfies the serial uncorrelatedness and
normal distribution assumption.

1A functional argument in parentheses designates function of a real
variable; for instance x(t) is a function of analog time t ∈ R. A func-
tional argument in brackets designates function of an integer variable;
for instance x[t] is a function of normalized discrete time (t = 1,2, . . .).
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Table 1: Simulation Data

Aircraft Number of Signal
state datasets Length (in s)

Turbulence Levels
Healthy Severe Moderate Light

42+20 20 20 60

Gust Wind Speed (in m/s)
Gusts 5 2 1

64+80 80 80 20

Degradation (in %)
Rotor 1, 2, 6 20, 40, 60, 80 10, 30, 50, 70, 90 100
Degradation 8+10 10 10 80

Sampling frequency: fs = 100 Hz

The general workflow for statistical process control
charts in the baseline (offline) phase and inspection (on-
line) phase is outlined in Figs. 3 and 4 respectively.

Figure 3: Statistical Process Control Charts

Scalar AR Identification Method

A single signal obtained from a healthy flight simulation
is parametrized to form a scalar (univariate) AutoRegres-
sive time series model (Ref. 24):.

y[t]+
na

∑
i=1

ai · y[t− i] = e[t], e[t]∼ iidN (0,σe
2) (3)

with ai and na designating the AR parameters and model
orders, respectively. ‘iid’ stands for identically indepen-
dently distributed, and N (·, ·) denotes a univariate nor-
mal distribution with the indicated mean and variance,
respectively. In Eq. 3, e[t] coincides with the one-step-
ahead-prediction error and is also referred as the model
residual sequence or innovations (Refs. 24, 25).

Figure 4: Statistical Process Control Charts

The identification of parametric time series models is
comprised of two main tasks: parameter estimation and
model order selection. The parameters for the AR model
can been estimated by minimization of the Least Squares
(LS) criterion (Refs. 25, 26), whereas the model or-
der selection is achieved based on the examination of
the Bayesian Information Criterion (BIC) (Refs. 25, 26)
(Eq. 4) and Residual sum of Squares over Signal Sum of
Squares Criterion (RSS/SSS) (Eq. 5). The former is a sta-
tistical criterion that penalizes model complexity (order,
and hence the number of free parameters) as a counterac-
tion to a decreasing model fit criterion. The latter deter-
mines the predictive capability of the model.

BIC = lnσ
2
e +(d× lnN)/N (4)
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RSS/SSS =
∑e2[t]
∑y[t]2

∀ t = 0,1, ...,N (5)

In Eq. 4, σ2
e is the variance of the residuals, d denotes the

number of parameters to be estimated for the model and
N denotes the number of samples used for estimation.

Statistical Monitoring

The residual signal e[t] is obtained by filtering the current
signal through the estimated model. Its standard devi-
ation and mean denoted by σe[t] and µe[t] respectively,
are estimated via a non-overlapping sliding window of
length m. The estimated sample standard deviation σ̂e[t]
and the sample mean µ̂e[t] become the charted values
for the S and x̄ charts respectively (Ref. 23). The aver-
age value of the standard deviation S̄ is be calculated as
S̄ = mean[σ i

e[t]]. Similarly, ¯̄x = mean[µ i
e[t]].

The upper control limit (UCL), control limit(CL), and
lower control limit(LCL) for the S-chart are defined as
the following:

UCL = B4S̄ CL = S̄ LCL = B3S̄ (6)

The corresponding x̄-chart limits are defined as :

UCL = ¯̄x+A3S̄ CL = ¯̄x LCL = ¯̄x−A3S̄ (7)

The values of B3,B4 and A3 are obtained from statistical
tables or the following equations (Ref. 23) :

B3 = 1− 3
c4
√

2(m−1)

B4 = 1+
3

c4
√

2(m−1)

A3 =
3

c4
√

m
where c4 =

4(m−1)
4m−3

(8)

The control charts constitute a means of monitoring the
statistical properties of the signals. Abnormal deviations
beyond the established upper and lower control limits
serve as alarms for changes associated with various nom-
inal events. It should be noted that the control limits
are based on the normality assumption can often be suc-
cessfully used, unless the population is extremely non-
normal (Ref. 23, pg.203).

TIME-SERIES ASSISTED NEURAL
NETWORKS

Machine learning techniques are being widely used in
Fault Detection and Identification, to make decision on

the current state of a dynamic system (Ref. 27). Classi-
fiers such as Support Vector Machines and Neural Net-
works can accommodate noise and uncertainty in data
with carefully chosen features and regularization param-
eters. This property of neural network makes it attractive
for our application, where the focus is to develop a ro-
bust rotor FDI framework unaffected by disturbance due
to gusts and noise due to turbulence encountered in real
flight. The relationship between the control, and state sig-
nals for healthy flight without gusts can be modelled by
time-series models. Next, the cross-correlation of con-
trol signals and state residuals obtained via the estimated
model are extracted as explainable features that follow
the dynamics of the hexacopter under different operating
conditions.

The implementation of this method requires estimation of
a statistical model for healthy aircraft and training a neu-
ral network to classify between healthy and faulty states
in the baseline phase whose workflow is shown in Fig. 5.
Online monitoring for fault detection and identification
follows the flowchart shown in Fig. 6.

Figure 5: Time-Series Neural Networks: Baseline Phase

Vector ARX Model Identification for Healthy Aircraft

Vector AutoRegressive (VARX) models employ multi-
dimensional signals, i.e. m-dimensional aircraft atti-
tudes as the response and n-dimensional control sig-
nals as excitation, for input-output time series model-
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Figure 6: Time-Series Neural Networks: Online Phase

ing (Refs. 28, 29) given by:

y[t]+
na

∑
i=1

Ai ·y[t− i] =
nb

∑
i=0

Bi ·u[t− i−nk]+ e[t], with

e[t]∼ iid N (0,Σ), Σ = E{e[t] · eT [t]}
(9)

with Ai (m×m) designating the i-th AR matrix, Bi (m×
n) designating the i-th X matrix, e[t] (m× 1) the model
residual sequence characterized by the non-singular and
generally non-diagonal covariance matrix Σ, na the AR
order, nb the X order, nk the delay in terms of lag be-
tween response and input signals and E{·} statistical ex-
pectation. Given the attitude signal measurements y[t]
(t = 1,2, . . . ,N), the estimation of the VARX parameter
vector θ comprising all AR and X matrix elements (θ =
vec([A1 A2 . . .Ana B0 B1 . . .Bnb]) and the residual
covariance matrix Σ is accomplished via linear regres-
sion schemes based on minimization of the Ordinary
Least Squares (OLS) or the Weighted Least Squares
(WLS) criterion (Refs. 25, 26). The modeling procedure
involves the successive fitting of VARX(na,nb,nk) mod-
els while sweeping through increasing AR and X orders,
na and nb respectively and delay, nk, until an adequate
model is achieved. The model order is chosen by similar
fashion as AR model described in Section . But for vec-
tor models the equations for BIC and RSS are modified
(Ref. 11) as follows :

BIC = ln
(
trace(Σ)

)
+(d× lnN)/N (10)

RSS/SSS =
m

∑
i=1

∑e2
i

∑yi[t]2
∀ t = 0,1, ...,N (11)

Time-Series Assisted Neural Network

The VARX model for healthy aircraft is used to filter the
aircraft signals (response and controls) and obtain output
residuals. Important information about the dynamics of
the aircraft is embedded in the output residuals and con-
troller commands due to the incorporation of a feedback
controller. To this effect, cross-correlation between the
output residuals and inputs have been identified as a pow-
erful feature to distinguish between different rotor faults
and gust affected healthy flight.

The cross-correlation function between two signals z(t)
and x(t), denoted by γzx[τ] is given by Eq. 12.

γzx[τ] = E{z[t] · x[t + τ]} (12)

where τ is the time lag in number of samples.

The cross-correlation function is fed to the input layer
of a 2-layer neural network to classify 4 classes: healthy
(without gusts and affected by gusts) and rotor 1, 2, and
6 degradation.

The input layer is denoted by xT and the output layer is
denoted by h(x) and is related by the following equation:

h(x) = θ

(
W2

T
(

θ
(
W1

T x
)
+B1

)
+B2

)
(13)

where, θ(s) indicates the hyperbolic tangent activation

function given by θ(s) =
es− e−s

es + e−s . The weight ma-

trices and bias vectors for the two layers denoted by
W1,W2 and B1,B2 are determined in the baseline train-
ing phase by backpropagation learning techniques to
minimize classification error.

RESULTS AND DISCUSSION

Data Generation

Flight simulation for the hexacopter with a gross weight
of 2 kg was performed at 5 m/s forward speed under se-
vere, moderate and light turbulence levels according to
the Dryden model. Figures 7 through 12 show control
and attitude time histories of the hexacopter, for cases of
healthy aircraft, flight under gusts and rotor degradation.

The aircraft response, namely roll, pitch, yaw, and al-
titude signals for flight under severe turbulence in ab-
sence of any rotor faults and gusts are shown in Fig. 7.

6



0 10 20 30 40 50 60

Time (s)

-8

-6

-4

-2

0

2
A

tt
it
u

d
e

 (
d

e
g

re
e

s
)

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

A
lt
it
u

d
e

 (
m

)

State Signals

Roll

Pitch

Yaw

Altitude

Figure 7: Attitudes state signals for healthy air-
craft
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Figure 8: Control signals for healthy aircraft

Figure 9: Attitudes state signals for flight af-
fected by gusts of 5m/s

Figure 10: Control signals for flight affected by
gusts of 5m/s

The corresponding linearly independent multicopter con-
trols, namely collective, roll, pitch, and yaw control sig-
nals shown in Fig. 8 are derived from individual rotor
speed commands via multirotor co-ordinate transform
(Ref. 30). These signals are observed to be stationary,
i.e have constant mean and standard deviation through-
out the length of the flight.

Under gusts, the aircraft response deviates but is quickly
compensated by the controller as seen in Fig. 9. On the
other hand, the controller commands show a change in
mean value for the duration of the gust (depicted by ver-
tical black dashed lines) (Fig. 10). The magnitude, direc-
tion, and duration of gusts in real flight can be completely
random in nature. The aircraft response and control sig-
nals for the gusts whose magnitude and direction which
mimics rotor faults the most closely have been shown in

this section. For the analysis, all possible directions and
different magnitude of gusts have been considered.

In case of rotor faults, similar trends with aircraft re-
sponse has been observed, where the initiation of fault
is evident by the deviation from the nominal state, being
followed by controller compensated state (Fig. 11). For
the controller commands the change in statistical mean
is observed after front rotor sees a degradation of 60%,
throughout the rest of the flight duration (Fig. 12). Addi-
tional data for side rotor degradation and gusts have been
shown in Appendix A (Figs. 18 through 21).

Statistical Process Control Charts

Statistical Process Control charts are used to monitor the
changes that take place in a process by establishing con-
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Figure 11: Attitudes state signals for 60%
degradation of Rotor 1
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of Rotor 1
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Figure 13: Residual Normality and Autocorrelation

trol limits which are violated in case of events beyond
normal sampling variability.

Increase in the mean value of collective control in re-
sponse to loss of thrust due to rotor degradation is highly
indicative of a rotor fault if it persists for the entire length
of flight. On the contrary, only certain gust directions will
result in a change (increase/decrease of mean value) of
the collective control command, but this lasts only for the
duration of the gust. Therefore, monitoring the x̄ statis-
tics of the collective control signal can help distinguish
between gusts and rotor faults. The signal is obtained
from healthy aircraft flight simulation under severe tur-
bulence, of length 60 s (N=60000 samples, Fs =1000 Hz)
has been used to establish the statistical control limits.
To this end, the collective control signal has been mod-

eled by a simple AR(6) model, the model order chosen
via BIC, to obtain white residuals that follow a normal
distribution, as evident in Fig. 13. The UCL and LCL
have been calculated by Eq. 6, where the length of non-
overlapping window, m = 1000, and ¯̄x and S̄ are the val-
ues of statistical expectation of the mean and variance of
the non-overlapping windows of the residual sequence re-
spectively. Here, the signal is divided into 60 segments,
hence in online monitoring the test statistics are com-
puted every 1 s.

Results for Statistical Process Control Charts Indica-
tive results for x̄ statistics monitoring under gusts of dif-
ferent duration and magnitude as well as different levels
of front rotor (1) degradation is demonstrated in Figs. 14
and 15. It can be observed that due to gusts or faults the x̄
statistics (shown by the x and +) violates the UCL and/or
LCL given by red horizontal dashed lines, whereas for
healthy flight without gusts (shown by the o) it always
remains between the given limits.

Figure 14 shows that for the duration of the gusts the x̄
statistics violate the UCL and LCL depending on the di-
rection of the gusts, and the extent of violation depends
on the magnitude of gusts. Intermittent gusts (shown by
the +) of 2m/s are active for a 4 to 7 s window in every 10
s duration. Since this gust has a component coming from
negative Z-direction (from below the aircraft), it causes
the collective control to decrease and hence the LCL is
violated for duration for which the gust is active. The
longer gusts (shown by the x) have a magnitude of 5m/s,
with a component in positive Z-direction and last for 4-18
s in every 20 s duration. Consequently, the x̄ statistics ex-
ceed the UCL whenever the gust appears and goes back
within the limits after it has passed.
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In Fig. 15, the black vertical dashed line denotes the ini-
tiation of rotor 1 fault, after which the x̄ statistics always
crosses the UCL because the mean value of collective
control signals always increases due to rotor degradation
to compensate for loss of thrust. Though this method
is very sensitive to even 20% rotor degradation, the test
statistics continue to lie above the UCL only when the ro-
tor losses speed of 60% or more of its nominal value. For
less severe rotor degradation, the decision points show
sporadic violation of UCL, in contrast to steady violation
of UCL for more than 60% deterioration. Additional re-
sults for degradation of rotor 2 and 6 have been shown in
Appendix B (Figs. 22 and 23).

Therefore, violation of the LCL is definitely an indication
of gust because no rotor degradation would result in a de-
crease in mean rotor speed while maintaining the same
flight condition. But for gusts resulting in updraft, mon-
itoring control signals is not enough to distinguish them
from faults. Though monitoring the x̄ or S statistics of
response signals may reveal more information, the fault
identification by this method will become very complex
or even impossible especially in the presence of more
classes of faults. Also, it has been observed that S statis-
tics do not have significant changes when applied to both
control and response signals barring some initial change
due to gust or fault initiation and thus has not been in-
cluded in this study.

Time-series Assisted Neural Networks

Parametric Model Identification Vector (multi-
variate) parametric identification of the aircraft dynamics
has been based on 40 s (N = 4000 samples at sampling

frequency of 100 Hz) of aircraft attitude and control
signals obtained from healthy aircraft flight at 5 m/s
under severe turbulence. In the present case, the response
comprises of the roll, pitch and yaw attitudes and the
excitation is the multirotor controls, namely the collec-
tive, roll, pitch, and yaw controls. The model parameters
and model order, Ai,Bi and na,nb,nk, respectively
(Eq. 9), need to be estimated so that the model properly
represents the dynamics of the system under healthy
conditions. The modeling strategy consists of successive
fitting of VAR(na,nb,nk) models until a suitable model
with least amount of complexity (number of parameters)
and best fit is selected.

Model order selection is based on a combination of
Bayesian Information Criteria (BIC) (Eq. 4) and Resid-
ual sum of squares normalized by Signal sum of squares
(RSS/SSS) criteria (Eq. 5). A model order of na= 5,nb=
5,nk = 0 yields the minimum BIC and this model is rep-
resented as VARX(5,5,0). This order exhibits a very
low RSS/SSS value of 2.4× 10−3% demonstrating ac-
curate identification and excellent dynamics representa-
tion of the healthy aircraft at 5 m/s and under severe
turbulence. The number of parameters estimated for the
VARX(5,5,0) model results in a Samples per Parameter
(SPP) ratio of 38.09 ( N

d ), and the suggested value is more
than 15 (Ref. 10).

The model was validated based on the fact that the model
matching the current state of the system should gener-
ate output residual sequences which are uncorrelated with
each other as well as the input signals. Consequently, a
healthy aircraft signal has been generated from a differ-
ent realization of severe turbulence. The cross-correlation
function of the output residual sequences obtained from

9



driving the current signals from a healthy aircraft through
the healthy model has been observed to be white with
95% confidence, as shown Fig. 16 (confidence intervals
shown in blue). Next, the crosscorrelation function of in-
put signals and output residuals have been presented in
Fig. 17. It shows that the output residual sequences are
uncorrelated with the past values of the inputs, i.e. for
positive values of lag. For negative values of lag they
are serially correlated, because the future values of inputs
depend on the current output values due to the feedback
controller in place.
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Figure 17: Input and residuals crosscorrelation

Training of Time-Series assisted Neural Network
From Ref. 16, it has been observed that cross-correlation
of output residuals, obtained via a statistical model of a

Table 2: Time-Series assisted Neural network training

Input Cross-correlation between
Type output residuals and

input signals (20 s)
Input Layer Size 1519
Training Conjugate Gradient
Function with Powell-Beale Restarts
Hidden Layer Size 10
Output 4 (Healthy and
Classes Rotor 1,2 or 6 failures)
Cost Function Cross-Entropy
Activation Function Hyperbolic Tangent Function
Training termination Validation
Performance 2.2×10−11

healthy aircraft, have better capability to detect and iden-
tify rotor failures using simple neural network than sig-
nals only. Cross-correlation function serves as a “good”
feature for fault classification. To this end, output residu-
als and input signals (controller commands) have been
obtained from filtering the different healthy and faulty
signals of 20s length through the healthy aircraft model.
Next, the cross-correlation of these with each other up
to positive and negative lag of 30 is fed through the first
layer of the neural network. The first classification con-
sists of healthy signals under severe turbulence with and
without gusts (5 m/s with different direction and dura-
tion). The rotor 1, 2, and 6 fault classes have been trained
with the respective defective rotor signals of 20, 40, 60,
and 80% degradation. Therefore, this network, having
output classes as healthy aircraft, rotor 1 fault, rotor 2
fault and rotor 6 fault, detects and identifies the rotor
faults simultaneously. Note that the number of training
data sets (See Table 1) should be balanced for the dif-
ferent classes to avoid classifier bias. The details of this
neural network are given in Table 2.

Results for Time-Series assisted Neural Network Air-
craft response and control signals obtained from current
flight, with window length 5 s updated every 0.2 s, have
been used for online monitoring by following the work-
flow depicted in Fig. 6. The neural network has been
trained with information obtained from signals of length
20 s in the baseline phase for better tuning of weights and
biases. In the online phase shorter signals of length 5 s
have been utilized for faster FDI. To ascertain the gen-
eralization capability of the neural network, data from
various unknown operating conditions have been applied
which have not been used to train it. These conditions in-
clude moderate and lights levels of turbulence in healthy
flight, gusts of 1 m/s and 2 m/s and rotor faults of 10,
30, 50, 70, 90, and 100% degradation has been applied.
Note the neural network has only been trained with data
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Table 3: Fault Detection and Identification results

Healthy aircraft under turbulence and gusts

Aircraft Accuracy of
state Classification (in %)

Turbulence Levels
Healthy Severe Moderate Light

100 100 100
Gust Wind Speed (in m/s)

Gusts 5 2 1
99.71 99.68 100

Faulty aircraft

Rotor Accuracy of
Degradation Classification (in %)

Degradation Levels (in %)
20 30 40 50 60 70 80 90 100

Rotor 1 100 100 100 100 100 99.82 99.60 99.82 99.86
Rotor 2 99.77 99.08 99.71 100 99.48 99.54 99.68 100 100
Rotor 6 99.59 100 100 99.97 100 100 99.91 99.42 99.80

sets of severe turbulence, 5 m/s gusts and 20, 40, 60, and
80 % rotor degradation. The performance of this neural
network with test data sets is detailed in Table 3.
The computation time needed for classification in a single
window is less than 0.07 s, therefore a window update in-
terval of 0.2 s is reasonable. It has been observed that the
false alarm rate is less than 0.32% even when the flight
is affected by gusts. Also, the neural network is capable
of classifying the intermediate rotor faults for which it
has not been trained with fairly high accuracy. It should
be noted that 10% rotor degradation has been classified
as healthy in most cases because of negligible change
in dynamics due to mild rotor speed reduction and that
it extrapolates the training set which starts at 20% rotor
degradation. Rotor degradation of 100% has been clas-
sified as the respective faulty rotor though it extrapolates
the training set because of the considerable change in dy-
namics from the healthy state due to complete failure of
the rotor. On average fault detection tales 0.7s from the
initiation of fault, with a maximum of 2 s.

CONCLUSIONS
This paper introduces statistical time-series methods to
detect and classify rotor faults in multicopters under tur-
bulence and uncertainty while accurately rejecting dis-
turbance due to gusts. Development of statistical time
series models (response only and input-output) to repre-
sent healthy aircraft dynamics have been discussed fol-
lowed by development of fault detection and identifica-
tion methods assisted by information obtained from the

model estimated from the healthy aircraft. The important
conclusions from the study are summarized below.

• Statistical time series methods for rotor fault de-
tection in multicopters achieve effective detection
based on (i) ambient (white) excitation and aircraft
state (scalar or vector) signals, (ii) statistical model
building, and (iii) statistical decision making under
uncertainty.

• Non-parametric methods like Statistical Process
Control charts are simpler, but have similar sensitiv-
ity toward faults and gusts alike, which make them
inapt for differentiating between the two.

• Statistical Process Control charts need investigation
of multiple signals and complex decision trees to
identify rotor faults while rejecting gusts.

• The knowledge of controller effort for different op-
erating conditions like flight under gusts and rotor
faults can be used along with the aircraft output to
distinguish not only between healthy gust affected
flight and faulty states but also classify the rotor
faults.

• The cross-correlation function between input signals
and output residuals obtained from a input-output
statistical model for healthy aircraft serves as a pow-
erful feature for a machine learning algorithm.

• With the right feature, which is the crosscorrelation
function of signals obtained from various operating
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conditions here, even a simple 2-layer neural net-
work is capable of detecting and identifying rotor
faults of even 20% degradation while disregarding
aircraft response caused by gusts.

• In the online phase, the time-series assisted neural
network has been shown to achieve fault detection
and identification accuracy over 99% with signals
having unknown operating conditions that are not
used to train it.

• In the future, the modeling based fault detection
identification methods will be explored to ascertain
whether gusts change the healthy dynamics of the
system at all. Also, a rational path forward will be
to expand the scope of the Time-series assisted Neu-
ral Network to rotor degradation quantification.
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APPENDIX

A. Data Generation
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Figure 18: Attitudes state signals for 60%
degradation of Rotor 2
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Figure 19: Control signals for 60% degradation
of Rotor 2

Figure 20: Attitudes state signals for flight af-
fected by gusts of 5m/s

Figure 21: Control signals for flight affected by
gusts of 5m/s
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B. Statistical Process Control Chart
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Figure 22: ¯̄x statistics monitoring on collective
control signals under Rotor 2 degradation
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Figure 23: ¯̄x statistics monitoring on collective
control signals under Rotor 6 degradation
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