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A novel machine-learning probabilistic framework for online rotor fault detection, identi-
fication, and quantification in multicopters via strain signals is introduced. The framework
performs robustly under varying flight states, i.e., forward velocity and gross weight configu-
rations, as well as effectively accounts for the effects of gusts. It employs in-flight time-series
strain data obtained from a 2-feet diameter hexacopter flying under external disturbances and
uncertainty. The proposed scheme relies on out-of-plane strain measurements at each of the
multicopter booms to diagnose, i.e. detect, identify and quantify, rotor faults while distinguish-
ing them from the aircraft response to random gusts. A simple perceptron is shown to be
both effective and robust for performing simultaneous online rotor fault detection and identi-
fication. Next, linear regression models are used to predict the rotor degradation value with
95% confidence intervals using strain data at the boom on which the faulty rotor is mounted.
Indicative results for test operating conditions (not used in the training phase) demonstrate
the generalization capability of the method. The proposed framework can accurately detect,
identify and quantify minor rotor faults of 10% degradation while distinguishing them from
aggressive gusts of up to 10 m/s magnitude. The maximum time of fault detection is less than
0.3 s while achieving classification and quantification accuracy over 99%.

Nomenclature

AAM : Advanced Air Mobility
FDI : Fault Detection and Identification
FP : Functionally Pooled
IMU : Inertial Measurement Unit
ML : Machine Learning

I. Introduction

Advanced air mobility (AAM) powered by autonomous electric VTOL (eVTOL) aircraft is set to revolutionize
urban and rural transport by adding a third dimension of mobility. Its capabilities are expected to expand beyond

on-demand passenger and cargo mobility, surveillance for public safety, humanitarian aid, infrastructure supervision,
remote sensing, etc. A technical report by Uber Elevate states that the operational success will require absolute safety
and reliability which can be possible through innovation with large amounts of data from real-world operations after the
first generation VTOL aircraft are in production [1]. Therefore, the current interest is towards real-time system-level
awareness and safety assurance that will enable transition from “automation" to “autonomy" [2] in AAM vehicles. The
goal of this line of work is the development of a data-driven and probabilistic rotor fault diagnosis framework in VTOL
aircraft utilizing in-flight data streams which will provide online information about rotor faults; this is also a critical
function to trigger control reallocation or vehicle reconfiguration to complete the flight safely. Moreover, continuous
monitoring of system faults will decrease downtime for scheduled inspection by enabling Condition Based Maintenance
(CBM), thereby havving a significant impact as AAM popularity increases, with the alongside increase in both the
number of new passenger and freight aircraft (expected 37000+ by the year 2037 [2]), and trips per vehicle (estimated
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usage of 3, 000 to 5, 000 hours/year [1]).
Multicopters, i.e., rotorcraft with more than four rotors being capable of VTOL and performing agile maneuvers, have

attracted interest as a feasible platform for the development of future AAM aircraft concepts. They may offer improved
performance stemming from their rotor redundancy and allow for increased design flexibility, ability to integrate
distributed electric propulsion, and higher fault robustness and compensation capabilities compared to traditional
VTOL/rotorcraft [3–6]. Considering their increasing importance and likely widespread use, accurate and robust fault
detection and identification (FDI) are critical in order to ensure the vehicles’ overall safety and reliability within complex
dynamic environments under uncertainty. However, due to the strong dynamic coupling between rotors, fuselage, booms,
and control inputs, as well as time-varying, cyclo-stationary, and non-linear behavior, they face certain system modeling
and FDI challenges that are not present in fixed-wing aircraft. These issues, as well as potential solutions, have been
addressed by (i) various model representations (linear time-invariant, linear parameter varying, and non-linear models)
[7–10], (ii) signal processing techniques (in time- and frequency-domain, Kalman filter) [11–16], and (iii) computational
intelligence approaches (neural networks, fuzzy logic, hidden Markov models, dynamic Bayesian network, and Gaussian
mixture models, support vector machines) [17–25] – for a detailed review please refer to [26]. However, the available
studies are either limited by analytical model building with the assumption that the physical knowledge of the system is
available, use of arbitrary thresholds for detecting faults, or mostly concentrate on structural faults of blades, propellers,
powertrain, etc. in rotorcraft.

The problem of multicopter rotor fault diagnosis under constantly varying operating and environmental conditions is
approached via the use of statistical time series methods by the present authors. Such data-driven methods have been
mainly used in structural health monitoring [27–30] and for the diagnosis of various types of faults in fixed-wing aircraft
systems [31, 32] due to their simplicity, efficient handling of uncertainties, no requirement of physics-based models,
and applicability to different operating conditions. Zhao et al. have validated a stochastic hybrid system for health
evaluation in multicopters under simulated sensor anomalies [33]. In a recent work by the authors, Dutta et al. achieved
fast and accurate online rotor failure detection and identification via a novel application of stochastic time-series models
and proper statistical decision-making under pre-determined confidence levels for a hexacopter flying forward under
different turbulence levels and uncertainty as well as varying forward velocity and gross weight [34, 35].

Another class of data-driven methods lies within the machine learning (ML) family of techniques, adept in clustering,
classifying, and extracting useful features from high-dimensional and potentially noisy data. Neural networks (NN)
[17–19] and support vector machines [24, 25] are widely used in FDI to make a decision on the current state of a
dynamic system. Ganguli et al. [18] and Morel et al. [17] employed NNs to detect and trace faults and defects of
helicopter rotor blades using noise-contaminated vibration data. Multicopter rotor structural damage detection and
identification has been demonstrated by Iannace et al. in Ref. 19 with acoustic signals and NNs, and by Bondrya et
al. in Ref. 25 via support vector machines based on measurements of acceleration from the onboard IMU (Inertial
Measurement Unit). To address issues related to lack of physical insight and explainability with ML algorithms, Dutta
et al. proposed a time-series assisted neural network for online rotor FDI [36]. The features, acting as the input layer of
the NN, were extracted from a statistical time-series model of the healthy aircraft for improved physical explainability of
the data-driven scheme. .

To the authors’ best of knowledge, papers pertaining to actuator fault quantification in rotorcraft are scarce. Fault
magnitude information obtained online can facilitate the transition to optimal/robust control scheme and planning
alternative trajectories with limited control authority depending on the fault severity. In an attempt to fill this research gap,
the time-series assisted neural network which was previously developed by Dutta et al. was extended to determine three
discrete fault levels (mild, caution, and urgent) in addition to rotor fault detection and classification while differentiating
them from random gusts [37]. To enable continuous fault quantification, a unified statistical time-series framework
was developed based on Functionally Pooled (FP) models that are capable of representing aircraft dynamics under
rotor faults for a continuum of fault magnitudes of a particular rotor fault type [38]. This framework was applied to a
flexible-boom hexacopter using remote signals from the Inertial Measurement Unit (IMU) and local signals from sensors
placed on individual booms. Besides accurate fault detection and identification with either type of signal, improvement
in continuous rotor fault quantification was observed for local signals over remote (IMU) signals.

The objective of this paper is the introduction and assessment of a novel data-driven, computationally efficient,
framework for online rotor fault detection, identification, and quantification in multicopters operating under multiple
flight states and external disturbances. Data collected from local strain sensors mounted on the multicopter booms are
used to enable probabilistic model learning that triggers the fault diagnosis stage. The performance of the developed
framework with respect to fast rotor fault detection, accurate identification, gust distinction capability, and precise
quantification under turbulence, random gusts, and rotor faults is investigated with a substantial amount of test data sets.
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II. Hexacopter Model and Data Generation

A. Physics-Based Modeling of Multicopter System
A flight simulation model has been developed for a regular hexacopter (Fig. 1) using the summation of forces

and moments to calculate aircraft accelerations. This model is used as the source of simulated data under varying
operating and environmental conditions, as well as different fault types. Rotor loads are calculated using Blade Element
Theory coupled with a 3×4 Peters-He finite-state dynamic wake model [39]. This model allows for the simulation of
abrupt rotor failure by ignoring the failed rotor inflow states and setting the output rotor forces and moments to zero. A
feedback controller is implemented on the nonlinear model to stabilize the aircraft altitude and attitudes, as well as track
desired trajectories written in terms of the aircraft velocities. This controller is designed at multiple trim points, with
gain scheduling between these points to improve performance throughout the flight envelope. The control architecture is
detailed in Ref. 40. This control design has been demonstrated to perform well even in the event of rotor 1, 2, or 6
failure, with no adaptation in the control laws themselves. The 12 rigid body states are defined as:

x =
{
- . / q \ k D E F ? @ A

})
(1)

The input vector is comprised of the first four independent multirotor controls for collective, roll, pitch and yaw and
is defined in Eq. 2:

u =
{
Ω0 Ω' Ω% Ω.

})
(2)

The booms of the hexacopter are modeled as one-dimensional Euler-Bernoulli beams with an added tip mass and
loading, and are coupled to the rigid body motion of the vehicle. The positive bending deflections in the in-plane and
out-of-plane of the hub are illustrated in Fig. 2. Torsion and axial deformation are neglected. The beam equations
are discretized in space using the Ritz method with 2 modes in direction, as given in Eq. 3), with polynomial shape
functions, q that satisfy the geometric boundary conditions given by Eq. 4. To facilitate the inversion of the mass
matrix that arises from this discretization, these polynomials are chosen to be orthogonal. The modes are obtained via
eigen-analysis of the beam in a vacuum.

E =

2∑
8=1

[E8 (C)qE8 (;) F =

2∑
8=1

[F8 (C)qF8 (;) (3)

where, [ represents the modal deformations. ; is the non-dimensional boom coordinate, representing the distance of a
point on the boom from its root normalized by the boom length. It ranges from 0 to 1, denoting the boom root and boom
tip, respectively. The geometric boundary conditions are given by∗:

F(0) = F′(0) = 0 E(0) = E′(0) = 0 (4)

∗The symbols ‘ ′ ’ and ‘¤’ designate 3

3;
and

3

3C
, respectively.

Fig. 1 Hexacopter schematic Fig. 2 Flexible boom deformation
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The eight states for each flexible boom are defined as follows:

x =
{
[F1 [F2 [E1 [E2 ¤[F1 ¤[F2 ¤[E1 ¤[E2

})
(5)

The sensor signals can be calculated using the above aircraft states obtained from the flight simulation (Appendix A).

B. Incorporation of Turbulence
A continuous Dryden wind turbulence model [41] has been incorporated in the flight simulation model to replicate

realistic flight conditions. The Dryden model is dependent on altitude, length scale, direction-cosine matrix, body
velocity, and turbulence intensity. It outputs the linear and angular velocity components of continuous turbulence as
spatially varying stochastic signals. These signals are added to the inflow of each of the rotors by transforming them
from the aircraft center-of-gravity to the corresponding rotor locations, to account for the effect of the turbulent wind
velocities on the multicopter. The proper combination of the turbulence block parameters determines the fit of the
signals to observed turbulence [42]. In this system, the altitude is taken as 5 m, and the length scale as the hub-to-hub
distance of the hexacopter which is 0.6096 m (2 ft). The direction-cosine-matrix and forward velocity are determined
from the instantaneous aircraft states during the simulation.

C. Introduction of Gusts
Next, data sets under different magnitude (5 m/s to 10 m/s) and directions of gusts for healthy flight under severe

turbulence have been generated [43]. The gusts follow a ‘1-cosine’ shape with a gradual increase, followed by a
steady-state and gradual decrease [44], as shown in Fig. 3a. In the simulations, the gusts commence at 2 s with a gradual
increase from 0 to its full magnitude in the next 2 s, after which it becomes steady and lasts for 2 s, before gradually
decreasing to zero again in the next 2 s. Therefore, in the simulated data gusts last from 2-8 s in a span of 10 s of healthy
flight. In real flight, the magnitude, direction, commencement time, and duration of gusts can be random in nature
depending upon the region, altitude, and weather conditions. The wind velocity directions are denoted by unit vectors
with the positive X, Y, Z directions shown in Fig. 3b.

D. Data Generation
The data sets are generated through a series of simulations for various operating conditions ranging from a forward

speed of 4 m/s to 8 m/s and a gross weight of 2 to 4 kg. For gust-affected healthy flights, gusts of different magnitudes,
i.e., 5, 8.67, and 10 m/s, and various directions are considered. The rotor fault types addressed in this paper are front
rotor (rotor 1), right-side rotor (rotor 2), and left-side rotor (rotor 6) faults (See Fig. 1). Rotor degradation of different
magnitudes has been replicated by reducing the commanded speed of that particular rotor with a multiplier ranging
from 0 to 1, where ‘0’ denotes 0% rotor degradation, i.e., healthy aircraft and ‘1’ implies 100% rotor degradation or
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Fig. 4 Indicative gust profile: (a) magnitude of gusts with time and (b) direction of gust.
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Table 1 Summary of generated data sets

Phase Health Operating Rotor fault levels Signal
conditions states / Gust magnitudes Length

/ Turbulence levels
Tr
ai
ni
ng

D
at
a

Healthy (4,5,6,7,8) m/s Severe
flight × (2,3,4) kg turbulence 50 s

Gust affected (4,6,8) m/s 8.67 m/s and
healthy flight × (2,4) kg 8 directions 10 s
Rotor 1,2, (4,5,6,7,8) m/s 10, 50, 90 %
and 6 faults × (2,3,4) kg degradation 50 s

(4.5,5.5,6.5,7.5) m/s Severe
Healthy × (2.5,3.5) kg turbulence 30 s
flight (4,5,6,7,8) m/s Light

Te
sti
ng

D
at
a

× (2,3,4) kg turbulence 30 s
Gust affected (4.5,5.5,6.5,7.5) m/s 5 m/s and 6 directions
healthy flight × (2.5,3.5) kg 10 m/s and 6 directions 10 s

(4,5,6,7,8) m/s 20, 30, 40, 60, 70, 80, 100 %
Rotor 1, 2, × (2,3,4) kg degradation 50 s
and 6 faults (4.5,5.5,6.5,7.5) m/s 20, 40, 60, 80, 100 %

× (2.5,3.5) kg degradation 30 s
Sampling frequency: �B = 10 Hz

complete rotor failure. The data sets generated under different operating and health conditions considered in this paper
are summarized in Table. 1. From here onward, “modeled” flight states or rotor degradation levels mean that the training
data sets were generated under these operating conditions, and the rest of the operating conditions are referred to as
“unmodeled”.

III. Methodology
In a previous study, a sensor signals based statistical time series method, capable of effective fault detection,

identification, and magnitude estimation within a unified framework for a hexacopter flying under turbulence and
uncertainty was presented [38]. The method is based on the functionally pooled (FP) models (whose parameters are
functions of the operating conditions), and proper statistical decision-making schemes. FP models are capable of
accurately representing the aircraft dynamics under rotor faults for a continuum of fault magnitudes of a particular
rotor fault type. These models for different rotor faults on a multicopter can be identified from available time-series
sensor data in the baseline phase. In its inspection phase, there are three distinct steps taking place within a probabilistic
framework: step I involves fault detection, step II involves fault identification after rotor fault compensation by the
controller, and step III involves precise fault quantification within the identified type of fault. Fault magnitude is
continuous, involving an infinite number of potential fault magnitudes ranging from healthy to complete failure. The
validity and effectiveness of the method have been assessed via a proof-of-concept application to rotor fault diagnosis
with remote and local signals, i.e., z-acceleration signal from the system IMU and the z-accelerations at the respective
boom-tips, respectively. It has been demonstrated that effective fault detection, fault mode identification, and fault
magnitude estimation with uncertainty bounds is possible even for “unmodeled” (not used in training) rotor degradation
with a very limited number of sensor signals (even with a single response signal from the IMU) through powerful
signal analysis techniques. An important observation was that fault quantification performance, i.e., the accuracy of
fault estimation and tightness of uncertainty bounds were improved via the use of local sensors (boom accelerations)
compared to remote sensors (body acceleration).

However, when gusts are introduced in healthy flight, the above method falsely detects the response of the healthy
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Fig. 5 Healthy flight strain signals under various forward speed and gross weight configurations (the actual
configuration is indicated above each subplot).

aircraft to gusts as rotor faults, with both the remote and the local signals. To account for random gusts the method
needs to be significantly extended, such as identifying several time-varying models with the non-stationary signals
under gusts of different wind velocities and directions. Moreover, since these methods involve the identification of
dynamic models from signals, the signals need to be sampled at a relatively higher rate after proper filtering to capture
the aircraft dynamics and flexible boom natural frequencies. These limitations have motivated the need for other signals
which can be extracted from the available instrumentation and contain more information regarding rotor faults.

A. Sensor Signals and Indicative Data
Strain gauges are common sensors that are bonded directly onto aerospace structures to measure stresses along

load-bearing components. Nowadays, they are finding increasing applications in “smart” civil structures for continuous
health monitoring. Future AAM vehicles are most likely to be equipped with strain gauges on all the booms for early
detection of structural faults, cracks, and defects. Hence, with these available sensors, individual rotor speeds can be
monitored from the respective strain gauge readings, since the magnitude of the strain on each of the booms will depend
on the thrust produced by the rotor mounted on it. Actual rotor speeds can give physical insight into the controller
commands under rotor faults, and random gusts. In practice, the sensor readings will be stochastic in nature due to
sensor noise, and external disturbances during the flight. Therefore, the rotor fault diagnosis framework should be able
to account for the noise and uncertainty in the signals. It should be noted that this rotor diagnosis framework is based on
these available in-flight sensor signals only.

Flight simulation for the hexacopter was performed at operating conditions specified in Table 1. Figures 5 through
8 show signal time histories of strain gauges placed at all the boom roots (where the boom connects to the hub) for
cases of healthy flight with and without gusts, and different rotor fault scenarios under different operating conditions.
The x-axis shows the time in seconds, as the y-axis gives the value of out-of-plane (perpendicular to the rotor hub
plane) strain at each of the 6 booms. These local signals, sampled at 10 Hz, will be utilized for the development of
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Fig. 6 Indicative healthy flight strain signals under 8.67 m/s gusts from various directions under different
operating conditions (indicated above each subplot).

the machine-learning based framework of probabilistic rotor fault detection, identification, and quantification for their
certain characteristics, as discussed in the following paragraphs.

Figure 5 show the strain at each of the boom roots in the out-of-plane directions while flying at 4 flight states ((4,8)
m/s × (2,4) kg) under severe turbulence in healthy condition. Though the signals are stochastic in nature, they possess
a definite statistical mean value for each of the boom. These mean values of the strain on each boom depend on the
corresponding rotor thrust and hence the rotor speeds. Thus, these signals give an insight into the commanded rotor
speeds, when there are no rotor faults in the system. Note, that due to the coordinate system convention, the strains are
expressed in negative values and the lesser values represent more amount of boom strains and consequently higher rotor
speeds. Also, the total strain and consequently total rotor thrust is dictated by the gross weight of the aircraft, whereas
the differential thrust, reflected in the range of the boom strains depend upon the commanded forward speed under
healthy flight.

Figure 6 show the time history of the strain signals under a few indicative gusts of 8.67 m/s considered in this study.
The gusts commence at 2 s and last until 8 s, shown by the black dashed vertical lines. There are no rotor faults in the
system. In each of the subplots of Fig. 6, the flight states are different and the gusts are coming from various directions
(shown in the titles of the subplots). It is evident that there is a significant change in the mean values of strain signals,
mostly during the steady gust phase lasting from 4 s to 6 s. It can be observed in the top-left plot that the absolute value
of strains in booms 4 and 6 decreases during gust, mimicking a rotor fault, where the rotor loses thrust. The aim of this
study is to prevent such situations from being misclassified as rotor faults by considering the response of all the rotors
represented by the corresponding strain values at the boom roots.

Figures 7 and 8 shown the strain signals under rotor 1, and 2 faults and their varying magnitudes under a single
indicative flight states. For the simulation results presented, the rotor faults occur at C = 2 s, as indicated by the vertical
black dashed line. It should be noted that due to faults, the signals have a transient response before reaching the
controller-compensated steady state. In Fig.7, degradation of rotor 1 has resulted in the decrease of the absolute value of
strain on boom 1 due to loss of thrust. To compensate for the yaw imbalance due to this fault, rotor 4 also slows down.
Similarly, in Fig.8, the response of other rotors to a rotor 2 fault is seen. Finally, it can be observed that the rotor fault
magnitude has a direct relation with the change from the healthy value of strain on the boom it is mounted upon. Under
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Fig. 7 Indicative out-of-plane strain signals at
each boom root under 50% (top) and 90% (bot-
tom) degradation of rotor 1 at 6 m/s and 3 kg.
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Fig. 8 Indicative of out-of-plane strain signals
at each boom root under 20 % (top) and 100 %
(bottom) degradation of rotor 2 at 7 m/s and 4
kg.

complete failure of rotors or 100% degradation, the strain value goes to zero, due to zero thrust generated. The variation
of strain on the respective boom can be employed to estimate the fault magnitude after it is detected and identified.

The pattern of how the rotors respond to gusts and faults will be utilized to distinguish them. Also, observe that
contrary to faults, the change in signals due to gusts lasts only for its duration. Rotor faults cannot be reversed and hence
the change in the signals continue through the entire flight time.

B. The Machine-Learning Framework
In this section, the development of a data-driven framework for probabilistic rotor fault diagnosis utilizing the

carefully selected in-flight data streams via the application of common ML algorithms is presented. It has been observed
from the 6 local signals (out-of-plane strain at all boom roots) that the change in their absolute magnitude closely
reflects the actual rotor speeds. Under different operating conditions, such as healthy flight with or without gusts,
and different rotor fault scenarios, the statistical mean of signals will change relative to each other, forming some
distinguishing patterns. These patterns can be classified via a pattern recognition algorithm, such as a simple perceptron
to simultaneously detect and identify faults. If and when a fault is detected, the strain signal from the faulty rotor boom
will be used for fault quantification by a simple linear regression framework since the absolute value of strain depends
on the rotor speed and consequently the value of degradation. However, a simple normalization of the faulty rotor
boom strain will be performed to account for the multiple flight states without any knowledge of the current operating
conditions in the inspection phase. The workflow of the proposed rotor FDI technique is given in Fig. 9.

1. Perceptron
Perceptron is a computer learning method devised to simulate the ability of the brain to recognize and discriminate.

It is the building block of complex neural networks. This machine learning method enables distributed information
processing with neurons arranged in layers and executed in parallel. The neurons are non-linear information processing
elements and the interconnections between these neurons are known as weights. These weights are learned through
supervised training algorithms, where the training data contain the inputs and their corresponding output labels. Neural
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Fig. 9 The proposed machine learning framework for online probabilistic rotor fault detection, identification,
and quantification.

networks can compactly represent information, perform excellent classification, and can accommodate noise and
uncertainty in data with carefully chosen features and regularization parameters. These characteristics make it attractive
for the present application, where the aim is to develop a robust rotor FDI framework with signals affected by atmospheric
disturbances encountered in actual flight. But often deep neural networks focus on fitting the data and suffer from a lack
of explainability due to a “black-box” model. Moreover, to enable real-time decision-making with limited computational
capabilities of the onboard flight computer, a simple perceptron will be employed.

From the previous section, it has been observed that the values of out-of-plane strains at each boom root relative to
each other can be a useful feature for a pattern recognition algorithm to determine the aircraft health status. However, to
determine the different fault classes from the physical knowledge of the distinctive change in the strain at the boom
of the faulty rotor and their diametrically opposite pair will require nested decision-making trees [36]. To this end, a
simple perceptron is trained to output one of the 4 linearly separable classes: healthy aircraft, rotor 1 faults, rotor 2
faults, and rotor 6 faults with the mean value of the 6 strain signals over some time window as input. The input layer is
denoted by x) and the output layer is denoted by h(x) and is related by the following equation:

h(x) = f
(
]) x + H

)
(6)

where, f(I) indicates the softmax activation function†. The weight matrix and the bias vector for the layer are
denoted by] and H are determined in the baseline training phase by backpropagation learning techniques to minimize
classification error. Using the cross-entropy error as cost function and softmax function in the output layer, the
probabilities of each input element belonging to a output class can be obtained [45].

The first class is trained with healthy signals under severe turbulence with and without gusts (8.67 m/s with different
directions). The rotor 1, 2, and 6 fault classes have been trained with the respective rotor fault signals under 10, 50, and
90% degradation (denoted as training data in Table 1). The training data sets are divided into disjoint windows of 1 s.
Each data point consists of the mean of the 6 strain signals that are calculated over the above-mentioned window and its
corresponding true class label. The number of data points should be balanced for the different classes to avoid classifier
bias. The details of this perceptron are given in Table 2.

2. Linear Regression Model
Assuming that the mean of the out-of-plane strain at the faulty rotor boom varies linearly with the rotor fault

magnitude, a linear regression model is fitted (MATLAB function: fitlm.m) as follows:

H = x# + n x = [1 G] # = [V1 V2]) (7)

†Softmax activation function, f (I 9 ) =
4I 9∑�
8=1 4

I8
, C: no. of output classes, z =

(
]) x + H

)
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Table 2 Details of the perceptron training

Specifications Value
Input Type Out-of-plane strain at all boom roots
Input Layer Size 6
Training Function Levenberg-Marquardt optimization
Hidden Layer Size 0
Output Classes 4 (Healthy and Rotor 1,2, & 6 faults)
Cost Function Cross-Entropy
Activation Function Softmax
Data Partition Learning: Validation: Test = 50:25:25 % of Training Data
Performance 1.3 × 10−3

where ‘y’ denotes the rotor degradation value, ’x’ normalized strain at faulty rotor boom and ‘#’ the vector of
coefficients to be learnt from the training data. The normalized strain, ’x’ is calculated as following:

G =
`Y − Yfaulty rotor boom

`Y

`Y =
1
6

6∑
8=1

Y8 (8)

where, Y8 represents the strain at ’i’th boom root, and `Y denotes the mean value of all the strains. Note, that the total
rotor speed, and consequently the mean of all the strain values are maintained at the same value before and after the
rotor fault initiation, to support the weight of the aircraft. The normalization of strain is required for taking into account
the change in rotor strains with the various forward speeds and gross weights. Faulty rotor strain for the same rotor
degradation will be different for different flight states. This step helps map the value of faulty rotor boom strain linearly
with the rotor degradation, such that the normalized value is 1 for complete rotor failure under all flight states.

The linear regression models are trained with the faulty training data denoted in Table 1. For rotor 1 faults, the strain
on boom 1 normalized with the mean of all 6 strains is used, with the labels being the true rotor degradation values.
Similarly, for rotor 2, and 6 faults, the normalized strain signals from boom 2 and 6 are used for training, respectively.
The respective fault models output the predicted rotor fault magnitude, once the fault is identified along with the 95%
confidence intervals according to Scheffé’s method. The details of the trained linear regression models are given in
Table 3.

IV. Results and Discussion
Current in-flight data streams have been used for online monitoring of the aircraft health condition. A window of 1 s

of each of the 6 signals has been processed through workflow depicted in Fig. 10. To ensure continuous decision-making,
the window is updated every 0.1 s. The computation time required to make a decision is less than 0.01 s, which is less
than the window update time, making it suitable for real-time monitoring. A fault is detected when the perceptron
outputs any class other than healthy, and that output class determines which of rotors 1,2, or 6 has failed, enabling
simultaneous fault detection and identification. Note that this decision is attached with a probability estimate which

Table 3 Details of the linear regression models

Specifications Value
Inputs Out-of-plane strain at faulty rotor boom divided by the mean strain of all the booms
Number of coefficients 2
'2 fit 0.98, 0.97, 0.97 for rotor 1, 2, and 6 fault models, respectively
RMSE 3.73, 5.72, 5.49 % rotor degradation for rotor 1, 2, and 6 fault models, respectively
Output Rotor degradation with confidence intervals
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Fig. 10 Flowchart for online monitoring of rotor faults via the proposed framework.

can help the operator to have a better insight of the fringe cases such as confusion between very mild degradation and
strong gusts where the probability estimates of the two confusing classes will be about 50%, whereas in normal cases
the confidence of a decision is generally more than 95%. After fault detection and identification, the linear regression
model predicts the fault magnitude and its 95% confidence intervals using the normalized strain from the boom on
which the faulty rotor is mounted.

A. Indicative Results for Online Health Monitoring
Few indicative results for online monitoring of aircraft health with the current decision-making framework have

been presented in Figs. 11a through 13b. The top subplots show the mean of signals over a window of 1 s , updated
every 0.1 s, that are used as input to the decision-making framework. The bottom subplots show the decision output by
the framework, at each time window. The x-axis shows the time of flight in seconds in both plots. Since it is required to
collect signals for the required time window initially the online monitoring starts at 1 s. If the decision marker is shown
in +, the aircraft is healthy. Otherwise, the markers *, o, and x denote fault of rotor 1,2, and 6 respectively. The fault
magnitude is shown by the y-axis in the bottom plots.

Figure 11a shows the correct health prediction for a healthy flight under light turbulence. It can be observed that the
decision marker remains green (+), denoting healthy flight even under operating conditions of 5.5 m/s and 2.5 kg, a
flight state not used during the training phase.

Figures 11b and 12a, demonstrates accurate health monitoring even under aggressive gusts of magnitude 10 m/s and
8.67 m/s, respectively and unmodeled flight states. The aircraft responds to maintain its commanded speed under such
gusts, causing significant changes in the aircraft dynamics (See Appendix B, Figs.15 and 16). Moreover, in Fig. 12a it
can be clearly seen that the absolute value of strain for boom 1 decreases to counter the gust, thus mimicking a rotor
1 fault. But with the trained perceptron based on local signals, the health of the aircraft encountering both of these
indicative gusts are correctly classified as a healthy aircraft.

Figures 12b to 13b, show indicative results for online monitoring under rotor faults. Note that for the results
presented both the operating conditions and the rotor fault magnitudes (80, 60, and 20% degradation) considered were
not used in the training phase. In the top plots, the time of fault commencement is shown in black vertical dashed lines.
In the bottom plots, the time of fault detection is shown in brown vertical dashed lines. In the bottom plots the true
value of rotor degradation is shown by a grey horizontal line. The fault detection and classification, is depicted by
the marker colour changing from green (+) to red, blue, or violet (*/ o / x) depending on the rotor fault. If the true
fault magnitude lies within the 95% confidence intervals of the predicted values (shown by the vertical segments at
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Fig. 11 Indicative diagnostic results during the online inspection phase: (a) healthy flight under
light turbulence, and (b) healthy flight with gust of 10(−18̂ + 0 9̂ + 0:̂) m/s.

each decision marker), it denotes a correct fault quantification. The precision of fault quantification, i.e., the absolute
difference between the predicted and true value, is represented by the proximity of the predicted values and the true
value of rotor degradation.

Figure 12b shows correct rotor fault diagnosis of rotor 1 80% degradation. The fault is detected and classified within
0.1 s of the commencement, denoted by the green marker changing to red in the bottom plot. However, just after the
fault detection and classification, depicted by the marker colour changing from green, the fault quantification becomes
accurate only after the transient phase of the signals are over and they become steady (as shown in the top plots). This is
also due to the fact that the signals are time-averaged over 1 s. Thus, the fault is accurately quantified within 1 s of the
fault commencement, evident by the true rotor degradation lying in between the 95% confidence intervals shown in red
error bars. Also, it can be observed that fault quantification is quite precise since the true value and the predicted values
are very close to each other. Similar speed of rotor FDI, and efficiency of quantification is observed for rotor 2, and 6
faults in Figs.13a and 13b, respectively. It is evident that a fault is always detected within 0.3 s of its commencement
with a longer time needed for mild degradation levels, as is seen in Fig.13b, where a 20% rotor fault needs 0.3 s to be
detected.

B. Summary Results
The change in the mean values of out-of-plane signals under different rotor faults can be analyzed with logical

AND and OR functions, to detect and classify them. Hence, the perceptron is capable of efficient rotor FDI even under
various unknown operating conditions which have not been used to train it. This property, known as the generalization
capability of the perceptron has been demonstrated with the test data in the inspection phase. The flight conditions
include intermediate forward speeds and gross weights, light levels of turbulence in healthy flight, gusts of higher
magnitudes, and unmodeled rotor fault levels (for details, see Table 1). The performance of this framework on test
data is summarized in Tables 4a and 4b. For each dataset, a number of decisions are made throughout the flight time
with moving windows. The fault classification and quantification accuracy denote the percentage of those decisions
where the correct health condition is determined, and whether the true rotor degradation value lies in between the
predicted 95% confidence intervals, respectively. The fault prediction error gives the error in point estimation of the
fault magnitude, and its’ mean, and standard deviation are given in rotor degradation magnitude (% rotor degradation).

It is observed that though the perceptron was trained with healthy data under certain flight states and severe turbulence
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Fig. 12 Indicative diagnostic results during the online inspection phase: (a) healthy flight with
gust of 5(−18̂ − 1 9̂ + 1:̂) m/s, and (b) 80 % degradation of rotor 1.

(a) (b)

Fig. 13 Indicative diagnostic results during the online inspection phase: (a) 60 % degradation of
rotor 2, and (b) 20 % degradation of rotor 6.

only, it gives perfect classification with intermediate flight states, and light turbulence levels too (See Table 4a).
For gusts, even with unmodeled flight states, gust directions, and gust magnitudes (higher and lower than used for

training the perceptron), the health condition classification accuracy is maintained over 99%.
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Table 4 Summary results for rotor fault detection, identification, and quantification

(a) Healthy aircraft under turbulence and gusts

Health Operating Classification
condition condition accuracy (%)
Healthy Unmodeled flight states & severe turbulence 100
flight Modeled flight states & light turbulence 100
Healthy flight Unmodeled flight states & 5 m/s gusts 99.3
under gusts Unmodeled flight states & 10 m/s gusts 99.6

(b) Faulty aircraft

Operating Health Classification Quantification Fault Prediction Average
condition condition accuracy (%) accuracy (%) error (% degradation) time of fault

Average Standard detection (s)
Value Deviation

Modeled fight Rotor 1 faults 100 99.1 4.34 2.39 0.280
states & unmodeled Rotor 2 faults 100 99.1 5.14 3.45 0.198
degradations Rotor 6 faults 99.9 99.3 4.18 4.29 0.236
Unmodeled fight Rotor 1 faults 100 99.1 4.58 2.55 0.237
states & unmodeled Rotor 2 faults 100 99.2 5.50 2.97 0.152
degradations Rotor 6 faults 99.9 99.2 4.34 3.83 0.190

The rotor faults under both modeled and unmodeled operating conditions, as well as intermediate degradation
levels which have not been considered in the training phase, have been classified accurately (See Table 4b). The fault
quantification accuracy is over 99%. Here, the slight decrease in the accuracy can be attributed to the fact that in
the transient phase of the signals the fault magnitude is incorrectly predicted as lesser than the correct value that is
obtained with steady signals. The fault prediction error i.e., the difference between the predicted and true value of fault
magnitude, averaged over all datasets and decision points is 4.7 % rotor degradation. The standard deviation of the fault
prediction error is about 3.2 % rotor degradation. Lower values the mean and standard deviation of the fault prediction
error implies that the fault quantification will be accurate with tight confidence intervals. The average and maximum of
the range of 95% confidence intervals is 18 % and 28% rotor degradation, respectively. The fault detection time will be
in multiples of the window update interval, i.e. 0.1 s. The maximum time to detect a fault is 0.3 s. Mild rotor faults
require more time to be detected, and faults over 50% degradation generally require 0.1 s. The average time of fault
detection is calculated by averaging over all the test data sets and it is observed to be less than 0.3 s.

V. Conclusions
This paper introduced a novel probabilistic ML framework for online rotor fault detection, identification (classifica-

tion), and quantification. The assessment of the method was presented for a 2-feet diameter (rotor hub-to-hub distance)
hexacopter operating at various forward speeds and gross weights under turbulence, gusts, and uncertainty. In the
baseline phase, simple and computationally efficient ML algorithms, i.e., a perceptron and linear regression model,
are trained on the basis of out-of-plane strain signals measured from strain gauges placed at each one of the boom
roots. In the inspection phase, there are two distinct steps taking place within a probabilistic framework: step I involves
simultaneous rotor fault detection and identification and step II involves fault quantification within the identified type
of fault. Fault magnitude is considered to be continuous, involving an infinite number of potential fault magnitudes
ranging from healthy to complete failure. The effectiveness of the method has been assessed via application to a number
of “unmodeled” aircraft operating as well as health conditions. The method is well-suited for online health monitoring
of multicopters as demonstrated by the speed of decision-making under any admissible operating condition, excellent
accuracy with regard to distinguishing gusts from rotor faults, and precise fault magnitude estimation with corresponding
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uncertainty bounds.
The main conclusions drawn from this study are summarized as follows:
• The study – including the proof-of-concept application – has demonstrated that effective fault detection, fault type
identification, and fault magnitude estimation are possible based on judiciously selected signals from the onboard
sensor network.

• The embedded information pertaining to the aircraft rotors’ health condition under multiple flight states can be
extracted from boom strain signals via simple and computationally light ML algorithms such as perceptron and
linear regression models.

• Robust and accurate rotor fault detection, identification, and quantification for a hexacopter under various forward
speed and gross weight configurations have been achieved in real-time under different levels of turbulence, random
gusts, and uncertainty.

• Simultaneous rotor fault detection and identification occurs almost immediately after the fault commencement,
even for mild rotor degradation.

• Fault magnitude estimation is excellent, both at the nominal (point estimation) level and at the probabilistic level
with close uncertainty bounds.

• The ML framework is better suited for real-time monitoring of aircraft health than the nominal unified statistical
framework without any significant augmentation provided proper signals from the instrumentation to monitor the
strain on individual booms are used.

Acknowledgments
This work was supported by the U.S. Air Force Office of Scientific Research (AFOSR) grant “Formal Verification of

Stochastic State Awareness for Dynamic Data-Driven Intelligent Aerospace Systems” (FA9550-19-1-0054) and Program
Officer Dr. Erik Blasch.

Appendix

A. Sensor Signals
The data used in this study are obtained from simulation rather than experiments and therefore the sensor signals

need to be calculated from the available aircraft states.
Generally, Inertial Measurement Units (IMUs) are composed of a 3-axis accelerometer and a 3-axis gyroscope and

outputs the body accelerations (x, y, and z acceleration) and the angular rates (roll, pitch, pitch and yaw rates), which
can be determined from 12 rigid body states are defined in Eq. 1 as follows:

Body accelerations =
[
¤D ¤E ¤F

])
Angular rates, l =

[
? @ A

]) (9)

These signals are referred to as remote signals.
The sensors mounted on the different locations on the individual booms, such as strain gauges and accelerometers

are referred to as the local signals. These can be computed from the individual booms modal deformation states and
shape functions ( Eqs. 5 and 3) using the following expressions:

Total deformation, @ =

{∑2
8=1 qF8 (;)[F8 Out-of-plane∑2
8=1 qE8 (;)[E8 In-plane

Strain, n =

{∑2
8=1 q

′′
F8
(;)[F8 × 0/2 Out-of-plane∑2

8=1 q
′′
E8
(;)[E8 × 1/2 In-plane

(10)

where, 0 and 1 are the width and height of the cross-section of the boom, respectively. ; is the distance from the boom
root where the sensor has been placed, normalized by the boom length.

The accelerometer readings on each of the boom can be calculated as:

Acceleration =¥A = l × ¤A + ¤l × A + l × l × A (11)
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Fig. 14 Position of a boom with respect to the hub and its deformations.

Table 5 Boom properties

Parameters Value
Boom Length (L) 0.2617 m
Material Aluminium
Cross-section Hollow square
Outer dimension 0.0156 m
Inner dimension 0.0130 m
Flexural Rigidity 179 #<2

where,

Distance of accelerometer from the hub,

A =


−! cos Z
! sin Z
−3

 +

−∑2

8=1 qE8 (;)[E8 sin Z
−∑2

8=1 qE8 (;)[E8 cos Z∑2
8=1 qF8 (;) ¥[F8


Here, Z is the azimuth angle of the boom (See Fig. 14), ! is the length of the boom and 3 is the vertical position of the
boom from the center-of-gravity of the aircraft. The boom properties are given in Table 5.

Note that these derivations are shown for a single time instant, C. Repeating this computations for the entire range of
time will generate the time-series sensor data.

B. Aircraft Response to Gusts
Figure 15 shows the pitch response of the hexacopter to a 10 m/s gust coming directly from the direction of flight,

which effectively increases the flight speed. This is countered by the controller by decreasing the nose-down pitch to
maintain flight at the commanded speed of 5.5 m/s. To that end, the speed of rotor 1 increases, and that of rotor 4
decreases, indicated by the change in the mean value of strain evident in Fig. 11b. Similarly, a gust of magnitude 8.67
m/s and having a sideways component, causes the aircraft to roll significantly while the gust lasts, when compared to a
healthy flight without gusts, as shown in Fig. 16.
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