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ABSTRACT
The study presented in this paper introduces a novel approach for imputing missing sensor data in multicopters, which
enables enhanced safety and reliability by leveraging the multitude of sensors on these aerial vehicles. The pro-
posed approach is based on two deep learning techniques, namely Autoencoders (AE) and Long Short-Term Memory
(LSTM) networks. The effectiveness of this approach is evaluated using flight test data from a 2.5 kg hexacopter,
and three different scenarios of missing data are considered. To validate the performance of the proposed approach, it
is compared against two commonly used imputation techniques: k-Nearest Neighbor (KNN) imputation and Random
Forest imputation. The results indicate that the proposed approach outperforms both KNN and Random Forest in terms
of the accuracy of imputation. The network has an error of less than 10% when processing signals with six missing
sensor readings for a duration of 10 seconds. In contrast, KNN and Random Forest algorithms have an average error
of 18% and 26%, respectively. Moreover, the trained model can handle missing data with varying degrees of sparsity,
which makes it a more robust and flexible solution. The study also investigates the impact of using initial estimates
provided by the Kalman Filter for training the deep learning models. It is observed that incorporating these estimates
does not result in any improvement in the imputation accuracy. This suggests that the proposed approach is able to
learn the underlying patterns in the data without the need for additional information from the Kalman Filter. Over-
all, the results of this study demonstrate the potential of deep learning techniques for imputing missing sensor data
in multicopters. The proposed approach offers a more accurate and efficient solution than the traditional imputation
techniques, and can handle varying degrees of data sparsity. The findings of this study have important implications for
the design and operation of multicopters, and could result in enhanced performance and operational effectiveness of
these aerial vehicles.

NOTATION

h altitude
φ roll attitude
θ pitch attitude
ψ yaw attitude
ax acceleration along x axis
ay acceleration along y axis
az acceleration along z axis
p roll rate
q pitch rate
r yaw rate
V0 collective control
V1c lateral control
V1s longitudinal control
V0d yaw control

INTRODUCTION

Unmanned Aircraft System (UAS) operations have grown sig-
nificantly over the last decade, largely driven by the emer-
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gence of new commercial and military applications, and this
in turn has led to increased interest in developing trusted au-
tonomy. Autonomous UAS are intended to operate in close
proximity to obstacles and potentially human bystanders, ne-
cessitating strict performance requirements on guidance sys-
tems in terms of accuracy and integrity. High-quality data
from sensors plays a pivotal role in meeting these require-
ments and allowing for decisions to be made with high con-
fidence in these vehicles when flown autonomously. Issues
such as power supply interruption, temperature-dependent
variation, sensor damage, transmission failure, etc. can cause
sensor data loss or packet loss, resulting in missing values
that will prevent the system from receiving critical informa-
tion (Refs. 1–5). This can negatively affect the behavior of
the aircraft mid-flight and potentially risk the safety of the ve-
hicle or bystanders.

Even though conventional data-fusion algorithms like Ex-
tended Kalman Filter (EKF) have been enhanced so as to im-
prove accuracy and robustness, their performance can degrade
with increasing non-linearity in system dynamics (Ref. 6).
The field of machine learning and artificial intelligence (AI)
has seen major advancements in the last decade. This along
with low form factor processor boards, capable of parallel
computations and development of advanced optimization al-
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gorithms, have opened up avenues to employ machine learn-
ing techniques to enhance autonomous capabilities, including
imputing missing data (Refs. 5, 7–9).

Some research groups have looked at the problem of missing
sensor values in a statistical sense (Refs. 10–18). These statis-
tical methods are simple to use, and their performance is ac-
ceptable when the rate of missing data is low. However, with
increasingly complex datasets, the performance of statistic-
based methods declines, since these methods are based on lin-
ear assumptions which is not true for nonlinear, real-world
situations. Addressing this issue, multiple groups have ap-
plied machine learning to fill in or forecast the missing values.
Amiri et al. (Ref. 19) compared different fuzzy-rough nearest
neighbors-based methods for missing data imputation. Gar-
nier et al. (Ref. 20) implemented Artificial Neural Network
(ANN) for missing values estimation. Another research group
compared different decision tree-based methods for predic-
tions with incomplete data on different datasets (Ref. 21).

Despite these efforts, there are still some problems that the
algorithms mentioned above fail to address. First, they per-
form poorly if multiple time series have data missing at the
same time. Second, most of the studies examined situations
where the missing rate is small, which is not always true. Ad-
dressing these issues, the goal of this study is to develop a
deep learning-based framework for multiple time-series miss-
ing value imputation in the case of a multicopter sensor mal-
function/failure. This methodology uses temporal informa-
tion and also explores correlations between different variables
by combining two deep learning methods: Long Short-Term
Memory (LSTM) networks, and Autoencoders (AE), to com-
prehensively handle different situations of missing data.

MODELING AND ANALYSIS

Figure 1. RPI’s Hexacopter

The platform used for the study is RPI’s hexacopter (Fig. 1).
It is based on Tarot 680 Pro frame and features the Cube Or-
ange flight controller (Ref. 22). Detailed specifications of the
aircraft are provided in Table 1. The aircraft is flown in stabi-
lize mode for data collection and it allows the pilot to fly the
vehicle manually.

Cube orange features a barometer, magnetometer, and an iner-
tial measurement unit (IMU), that employs an accelerometer,
and a gyroscope. All the sensors are connected via a serial
peripheral interface for quick transmission of data. Pixhawk
also logs the commanded controls along with all the sensor
outputs, which can be retrieved after the flight for analysis.
This study uses four controls (PWM signals: V0, V1c, V1s, and
V0d), accelerations (ax, ay, and az), angular rates(p, q, and r),
attitudes (φ , θ , ψ) and barometer recordings (h) for the algo-
rithm development.

The linear accelerations and angular rates are recorded by
the accelerometer and gyroscope respectively. The attitudes
are then calculated based on the accelerometer, and gyro-
scope readings using an Attitude Heading Reference System
(AHRS). Thus, if either accelerometer or gyroscope readings
are affected due to sensor malfunctioning, the attitude cal-
culation will be erroneous. With that in consideration, this
study considers the cases listed in Table 2. Thus, the algo-
rithm should be capable of handling cases with 1, 3, or 6 time
series with missing data.

A good imputation model should be capable of exploring cor-
relations among data and learning temporal information to
handle different missing patterns (systematic missing, random
missing, etc.). This study uses Autoencoders (AE) for explor-
ing correlations and Long Short Term Memory (LSTM) net-
works to handle the temporal dependencies in data. AE are
multilayered NN consisting of two blocks: encoder and de-
coder. The feature extraction capability of AE can be used to
learn the correlations between different signals. LSTM is a
special kind of recurrent neural network capable of learning
both long and short-term dependencies. These two machine
learning approaches are discussed in detail in the following
sections. For the present study, the Matlab® Deep Learning
toolbox is used for implementing both deep learning algo-
rithms.

Table 1. Hexacopter Specifications
Aircraft

Weight, with battery 2.5kg
Boom Length 340mm
Motor Weight 93gm

Motor Kv Rating 380RPM/V
Rotor diameter 330mm

Autoencoders

Autoencoder (AE) is a multi-layer neural network architec-
ture that consists of encoding and decoding layers connected
by a bottleneck layer (Refs. 23–25). The primary focus of
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Table 2. Possible Missing Data Scenarios

Variable affected
Number of time

series with
missing data

Barometer h 1
AHRS φ , θ , ψ 3
Accelerometer ax, ay, az, and φ , θ , ψ 6
Gyroscope p, q, r, and φ , θ , ψ 6

an AE is to learn a lower-dimensional representation, known
as encoding, for higher-dimensional data. In the context of
the current application, where the sensor readings are related
by physics-based equations, AE can capture the features that
correlate the different data streams. This is accomplished by
training the network to minimize the difference between the
input and the reconstructed output using a loss function such
as mean squared error.

Autoencoders are a versatile class of neural networks that can
be used for various tasks such as data compression, denoising,
and anomaly detection. In data compression, the objective is
to learn a compressed representation of the data that can be
used to reconstruct the original data with minimal loss of in-
formation. In denoising, the objective is to learn a represen-
tation of the data that is robust to noise and can be used to
remove noise from the input. Finally, in anomaly detection,
the autoencoder learns a representation of the data that can
identify instances that deviate from the normal patterns in the
data.

Autoencoders are a powerful tool for unsupervised learning
tasks such as data compression, denoising, and anomaly de-
tection. They work by learning a compressed representation
of the input data that can be used to reconstruct the original
input with minimal loss of information. Variants such as the
Variational Autoencoder (VAE) can also learn a probabilistic
representation of the data, which is useful for tasks such as
generative modeling and image synthesis.

The autoencoder architecture (Fig. 2) consists of two main
parts: the encoder and the decoder. The encoder takes the in-
put data and maps it to a lower-dimensional representation,
called the encoding or latent representation. The decoder then
takes this encoding and maps it back to the original input
space. Both the encoder and decoder are typically imple-
mented as neural networks, with the encoding and decoding
functions learned during the training process.

The bottleneck layer is designed to restrict the flow of in-
formation, allowing only the essential information to pass
through. The size of the bottleneck layer determines the fea-
tures that are extracted from the information passed from the
encoder layer. Since the features are embedded in the bottle-
neck layer, missing data can be imputed using the correlation
information stored in the bottleneck. Additionally, since the
bottleneck represents the compressed representation of the in-
put, it lowers the risk of overfitting.

Figure 2. Autoencoder Architechture

Long short-term memory (LSTM)

Long Short-Term Memory (LSTM) is a type of recurrent neu-
ral network (RNN) architecture that was first proposed by
Hochreiter and Schmidhuber in 1997 (Ref. 26). The purpose
of LSTMs is to overcome the vanishing gradient problem,
which is a common issue encountered in traditional RNNs
during training on long sequences. The vanishing gradient
problem arises when the gradients that are propagated back
through time in the network become very small, making it
difficult for the model to learn long-term dependencies.

LSTMs have been extensively verified in the machine learn-
ing and AI community on various problems, such as speech
recognition and fault detection (Refs. 27, 28). Their neu-
ron structure is particularly well-suited for learning long and
short-term impacts from past time-series, resulting in supe-
rior performance compared to traditional nonlinear machine
learning algorithms like Support Vector Machines (SVM) or
Artificial Neural Networks (ANN).

Fig. 3 compares a single ANN unit with LSTM unit. It can
be observed from the figure that the main difference is that
LSTM units have value (ht ) and state communication (Ct ) in
between the units. So, in addition to input at the current time
step, LSTM also uses the output from the previous time step
to make predictions.

LSTMs address the vanishing gradient problem by incorpo-
rating memory cells and gates into the RNN architecture. The
memory cells are capable of storing information for extended
periods, while the gates can control the flow of information
into and out of the memory cells. There are three primary
types of gates used in LSTMs: the input gate, the forget gate,
and the output gate (Fig. 4). The input gate controls the flow
of information into the memory cell, while the forget gate con-
trols the flow of information out of the memory cell. Finally,
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Figure 3. ANN unit vs LSTM unit (Ref. 27)

the output gate determines which information should be out-
put from the memory cell.

First, the forget gate decides which information to keep from
historical blocks, and is given by the Eq. 1.

ft = σ(Wf .[ht−1,Xt ]+b f ) (1)

where σ represents the sigmoid function, Wf and b f are the
weights and bias. For each training iteration, the weights and
biases are tuned automatically during the process to improve
the predictions.

The input gate decides which new information in Xt should be
stored in the cell state. It is accomplished using Eq. 2 and 3.

it = σ(Wi.[ht−1,Xt ]+bi) (2)

C̃t = tanh(Wc[ht−1,Xt ]+bc) (3)

The old state is multiplied by ft to forget what is unnecessary.
The new Ct is given as follows

Ct = ft ×Ct−1 + it ×C̃t (4)

Eventually, based on Ct , ht−1, and Xt , output gate provides ht
using Eq. 5, and 6.

ot = σ(Wo.[ht−1,Xt ]+bo) (5)

ht = ot × tanh(Ct) (6)

The units are stacked in series as shown in Fig. 4. All the other
calculations resemble the processes in a simple ANN such as
back-propagation, adaptive learning rate, and batch gradient
descent.

In summary, LSTMs are a powerful class of neural networks
that can handle the vanishing gradient problem and model
long-term dependencies in sequential data. They achieve this
by incorporating memory cells and gates into the RNN ar-
chitecture, allowing the model to selectively retain or discard
information over long sequences.

Training Algorithm

The architecture of the proposed algorithm is shown in Fig-
ure 5. The encoding layers of the AE compress the sensor
data by nonlinear transformation and the decoding layers use
the compressed features to recover the data. XT = X1,X2, ...Xt
represents the complete historical data with T time slots. It is
a multidimensional time-series with X1 = [V0 V1c V1s Vd1 φ θ

ψ p q r ax ay az h]1. The AE tries to learn a function gw,b(X)
that satisfies gw,b(X)≈ X , where w and b are the hyperparam-
eters that control the learning process. The objective function
for AE is given by Eq. 7.

L(gw,b,X) =
1
2
||gw,b(X)−X ||2 (7)

where gw,b is the reconstructed input as given by the first sim-
ple autoencoder.

gw,b(X) =W1 f (W1x+b)+b′ (8)

The forward calculation of the (l +1)layers in AE is

α
(l+1) = f (W (l)a(l)+b(l)) (9)

where f is the activation function and W (l), α(l), and b(l) are
the weights, activation value, and bias of the layer l respec-
tively. Other details of the AE structure are discussed in the
text (Ref. 23).

The weights and bias can be updated using

W l
i =W l

i −αal
jδ

l+1
i (10)

bl
i = bl

i −αδ
l+1
i (11)

To model the temporal relations, the regular neurons are re-
placed by LSTM cells (Figure 5). The readings at adjacent
time stamps would not change abruptly, but over a longer
range the differences might be pronounced. Also, since the
data is collected from flight tests, it is inherently noisy, and
therefore the model needs to be regularized. The regulariza-
tion penalizes large deviations.

L
′
(gW,b,X) =

1
2
||gW,b(XT )−XT ||2+ (12)

λ ||g,X ′|| (13)

λ is the regularization parameter. X ′
T is the prediction at the

target time stamp which has weights shared from it’s adja-
cent time stamps (Fig. 6). This can be thought of as ap-
proximating maximum likelihood training for the generative
model (Ref. 23)

logpmodelx = log∑
h

pmodel(h,x) (14)

To enable the network to capture long-term and short-term
dependencies a sweep of varying window sizes is executed.
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Figure 4. The repeating module in an LSTM contains four interacting layers (Ref. 29)

Figure 5. LSTM and AE based data imputation algorithm

Figure 6. Overall model of training spatiotemporal auxil-
iary features with regularization.

For this study, a total of 3200 seconds of flight test data was
used. 2400 seconds (75% of the total data set) of data was
used for training and validation, and the remaining is used for
testing the trained network. In addition to hover, the flight
test data contains data corresponding to various maneuvers.
Two examples are shown in Fig. 7, and 8. The orange arrows
represent the direction of flight and grey circles represent the
markers. It is important to note that the distances x1, x2, and
height h are varied (x1,x2 ≈ 12m−15m). Moreover, the tests
are done at various airspeeds. Thus, the training data consists
of variations of multiple flight variables. This ensures that
the network is trained on all variations and generalizes well.
During the training process, the data is passed in blocks of
10 seconds. The flag for missing data for the intended flight
variable is raised and the network tries to regenerate the data
for that variable. This value is then compared with the true
values to find the RMSE errors and train for the next iteration.
The training process is initialized with arbitrary weights and
these are tuned until the reconstruction error |X1 −X1R| for all
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Figure 7. Example: Top view of the maneuver including in
the data

Figure 8. Example: Climb and descent data included in
the data
the variables in the validation set stops decreasing (Ref. 23).
The training process can be summarized as follows:

• Split the dataset into training and testing dataset.

• Initialize AE-LSTM

• For each Xi in the training set, output the corresponding
reconstruction.

• Calculate reconstruction error: |X1 −X1R|

• Calculate regularization error: λ ||(g,X)||2

• Backpropagate the error to update the weights and bi-
ases: W l

i =W l
i −αal

jδ
l+1
i

RESULTS

Once the training is complete, the model can be tested on the
reserved test data set. To predict the missing values in real-
time, the test data set is configured to be passed in series and

the missing values are flagged. As soon as the model sees
the missing flag, it runs the dataset through the trained model
and starts making the predictions. The length of missing time
is increased from 1 second to 10 seconds in increments of 1
second to check the performance of the trained model with
varying lengths of missing data.

Barometer Readings Missing - 1 time series

First, the case with missing barometer readings is considered.
In Fig. 9, five seconds of barometer data is missing every 15
seconds (represented by the gray regions). The true barom-
eter reading is shown in blue and the predicted values, using
the trained network, are represented in orange. Visually com-
paring the two curves, it is clear that the trained LSTM-AE
network is able to predict the aircraft altitude well when data
is missing from one time series. To quantify the performance,
the root mean square error (RMSE) is evaluated for the entire
test dataset using a similar procedure. The evaluated RMSE is
0.12 m. The reason behind the good predictions is that the AE
structure is able to capture the correlations between barometer
readings and other variables, and LSTM learns the temporal
relationship in the data. With data only missing from one-time
series, there is sufficient information for imputation since the
prediction is made using the information about the correlation
with the other 13 variables (controls, accelerations, attitudes,
and angular rates).

0 10 20 30 40 50 60

time (s)

4.5

5

5.5

6

6.5

h
e
ig

h
t 
(m

)

Actual Data

Predicted Data

Figure 9. Predictions with barometer data missing

Next, the performance of the LSTM is compared with two
established data imputation algorithms, namely K-Nearest
Neighbors (KNN) and Random Forest Imputation (Fig. 10).
KNN is designed to find K nearest neighbors from all com-
plete instances in a given dataset and then fill in the missing
values with the mean of the neighbors (Ref. 30). The Random
Forest algorithm works by creating multiple decision trees and
aggregating their predictions. Each decision tree is built on a
random subset of the data and a random subset of the fea-
tures. The algorithm then averages the predictions of all the
decision trees to make a final prediction (Refs. 31, 32). The
predicted values are then used to fill in the missing values in
the dataset. RMSE is computed for all three algorithms for
length of missing data ranging from 1 to 10 seconds as de-
picted in Fig. 10. As anticipated, the RMSE increases with
the duration of missing data for all three algorithms (LSTM-
AE in blue, KNN in orange, and Random Forest in yellow),
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Figure 10. Performance comparison of different imputa-
tion methods

indicating that temporal information from previous time steps
becomes weaker as the algorithm progresses. Furthermore,
the RMSE values of LSTM-AE are (50% to 75%) lower than
those of KNN and Random Forest, highlighting its superior
predictive performance.
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Figure 11. Box Plot for testing data using sliding window

The method’s generalization capability can be evaluated by
implementing a sliding window on the test dataset and com-
puting the root mean square error (RMSE) for each method.
This is done by using a window of fixed size and moving it
along the time axis and making predictions for each situation.
This method enables the visualization of the error variance
across the entire dataset and enables a quantitative assess-
ment of the developed methods’ performance across the en-
tire dataset, providing a robust evaluation of its generalization
capability. The box plot of the testing dataset using a sliding
window of 5 seconds is presented in Fig. 11. The error spread
for LSTM-AE and KNN is smaller than the spread observed
using the Random Forest approach. Notably, the mean value
predicted by LSTM-AE is 0.4m lower than the mean error ob-
tained by the other two methods.

AHRS Reading Missing - 3 time series

Given that the predictive ability of the network has been es-
tablished in the scenario where data is missing from one time
series, the next case to be considered is when the Attitude and
Heading Reference System (AHRS) is malfunctioning. In this
scenario, the attitude calculations are either incorrect or miss-
ing (only sensor noise). This presents a significant challenge
as accurate attitude calculations are critical for the safe opera-
tion of many systems, particularly those involving navigation
and control. This would mean that data is missing from 3-
time series (φ , θ , and ψ) simultaneously. The predictions for
attitudes are shown in Fig. 12. Again, the grey regions rep-
resent five seconds of time when the data is missing. The
same trained model makes accurate predictions even when 3-
time series have data missing simultaneously, and shows good
agreement with the actual data over all three missing data seg-
ments.

Figure 12. Predictions with AHRS data missing

The overall RMSE value for attitudes with the length of miss-
ing time increasing from 1-second to 10 seconds is shown in
Figure 13. The RMSE increases for all three attitudes as the
length of missing time increases since the temporal informa-
tion for each attitude gets weaker. The LSTM-AE-based al-
gorithm performs 75% - 100% better than KNN and Random
Forest for all the lengths of missing data. This is due to the
strong correlation between the accelerations/angular acceler-
ations and attitudes.

To assess the generalization capabilities of the algorithm, a
sliding window approach is adopted to assess its performance
across multiple datasets. The resulting RMSE error distribu-
tions for each dataset are depicted in Fig.14 The predicted
mean values for roll and pitch attitude obtained using the
LSTM-AE method are found to be 3.5 degrees lower than
those obtained from the other two methods. Similarly, for
yaw, the mean value difference is 1.8 degrees. Notably, the
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Figure 14. Box plot for data missing from 3 time series

variance of errors for roll and pitch is relatively small for
LSTM-AE and KNN predictions, while Random Forest pro-
duced errors with larger variances, sometimes exceeding 6 de-
grees. This can be attributed to the fact that Random Forest
does not take into account the correlation between different
variables, resulting in poorer performance compared to the
other methods. In cases where AHRS calculations are com-
promised, the proposed deep learning approach outperforms
existing imputation models.

Accelerometer/Gyroscope Readings Missing - 6 time series

In the event of missing accelerometer readings, the re-
sulting inaccurate AHRS calculations can generate erro-
neous/compromised information across 6-time series. This
may lead to spurious or unreliable data, potentially affecting
the overall accuracy and reliability of the system. Therefore,
it is essential to ensure that accelerometer readings are consis-
tently captured to minimize the risk of inaccuracies in AHRS
calculations and subsequent data analysis. Missing acceler-
ation data also flags the attitudes so that readings produced

by AHRS are not used for decision-making. Similar to the
previous cases, the length of missing data is increased from 1
second to 10 seconds.

The predicted attitudes and accelerations for the case where
data is missing for 5 seconds are shown in Fig. 15 and 16 re-
spectively. The blue and orange plots represent the actual and
predicted values, respectively, for both attitudes and acceler-
ations. It is evident that the predicted values closely match
the true values, owing to the network’s ability to correlate
controls, angular rates, and barometer readings with the re-
quired variables. Fig. 17 and 18 present the overall Root Mean
Square Error (RMSE) values for attitudes and accelerations
across all three axes, respectively, as the length of missing
data increases. As expected, the RMSE error increases with
an increasing length of missing data for all axes. Notably,
when using the LSTM-AE approach, the error in accelera-

tions remains relatively constant
(

0.3
m
s2

)
, while it grows to

3
m
s2 for the other methods when the length of missing data

increases to 10 seconds.

Furthermore, Fig. 19 and 20 depict the box plots representing
the variance of RMSE errors for attitudes and accelerations
with a 5-second sliding window. LSTM-AE predictions out-
perform the other two algorithms, exhibiting a generally lower
mean and a comparable variance for all three axes. Overall,
these results demonstrate the effectiveness of the LSTM-AE
approach in accurately predicting attitudes and accelerations,
even in the presence of missing data for six variables.

Similarly, the situation where gyroscope readings are inaccu-
rate or missing is also investigated. This also represents the
scenario where data is missing from 6-time series simultane-
ously. The results are shown in Fig. 21 - 24 and the obser-
vations are generally similar to those reported earlier in this
section for missing acceleration and attitude data.

Training using initial estimate from Kalman Filter

ArduPilot employs a combination of sensor data and advanced
algorithms to calculate the vehicle’s attitudes, i.e., its orienta-
tion in space. The specific algorithms utilized depend on the
available sensors and the vehicle’s mode of operation. Typ-
ically, ArduPilot uses a complementary filter algorithm that
combines data from the gyroscopes and accelerometers to es-
timate the vehicle’s orientation. The gyroscopes provide a
continuous measure of the vehicle’s orientation change rate,
while the accelerometers offer a reference for the direction of
gravity, thereby determining the vehicle’s orientation.

Besides the complementary filter, autopilots can also leverage
magnetometer data to estimate the vehicle’s heading or direc-
tion. The magnetometer measures the strength and direction
of the Earth’s magnetic field, which serves as a reference for
determining the vehicle’s attitudes. Moreover, GPS data is in-
corporated if available, to enhance the accuracy of the attitude
estimates. GPS provides the vehicle’s position and velocity,
which can be used to refine the orientation and heading es-
timates. Thus, the attitude calculation process involves the
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Figure 15. Predictions with acceleration data missing Figure 16. Attitudes predictions with accelerations data
missing
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Figure 17. Predictions with data acceleration data miss-
ing
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Figure 18. Attitudes predictions with accelerations data
missing

fusion of data from multiple sensors using sophisticated al-
gorithms to estimate the vehicle’s orientation and heading in
space.

Estimated Kalman Filter (EKF) is a mathematical algorithm
widely used in robotics, aerospace, and other fields for state
estimation and sensor fusion (Refs. 33–35). It is an exten-
sion of the traditional Kalman filter and is designed to han-
dle nonlinear systems. The EKF algorithm combines sensor
measurements with a mathematical model of the system to
estimate the state of the system in the presence of noise and
uncertainty. Most of the autopilots have EKF integrated in the
system that uses a fault detection and exclusion (FDE) algo-
rithm, which identifies and excludes faulty sensors from the
estimation process.

The Extended Kalman Filter (EKF) can offer a reliable ini-
tial estimate of the states, which can subsequently enhance

the training process. In this study, we consider the scenario
where attitude data is missing. During the training phase, the
EKF-predicted initial attitude values are utilized, followed by
the model’s standard training procedure. Fig. 25 displays the
predicted attitudes using both the LSTM-AE and the new net-
work, where the initial guess is based on the EKF-predicted
values. However, no significant improvement in prediction
accuracy is observed, as evidenced by the closely-following
curves. The same can be validated using the RMSE values
plotted for both methods for varying lengths of missing data
(Fig. 26).

CONCLUSIONS

This study proposes a deep learning-based approach for im-
puting missing sensor data in multicopters, a critical task
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Figure 19. RMSE for attitudes with acceleration data
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Figure 20. RMSE for accelerations data missing

Figure 21. Predictions with angular rates data missing Figure 22. Attitute predictions with angular rates data
missing

for safe and efficient operation of aerial vehicles. The pro-
posed approach is based on two deep learning techniques,
Autoencoders (AE) and Long Short-Term Memory (LSTM)
networks. The neurons in AE architecture are replaced with
LSTM units to integrate the two methods. The algorithm is
evaluated using flight test data from a 2.5 kg hexacopter, and
three different scenarios of missing data are considered. This
allows testing the developed algorithm under realistic con-
ditions and assessing its ability to handle different levels of
missing data.

The algorithm is compared to two commonly used impu-
tation techniques: k-Nearest Neighbor (KNN) imputation
and Random Forest imputation. This comparison provides a
benchmark for the performance of the proposed approach and
demonstrates its superiority over traditional methods.

The results of the study indicate that the LSTM-AE trained

network outperforms both KNN and Random Forest in terms
of the accuracy of imputation. The network can handle miss-
ing data with varying degrees of sparsity, which makes it a
more robust and flexible solution.

The results show that the LSTM-AE network outperforms the
other two models by 50%-75% in cases where data is miss-
ing from a single time series. In situations where the AHRS
malfunctions and data is missing for attitudes, the network
trained using LSTM-AE performs 47%-82% better than the
alternatives. Furthermore, the predictions for all the testing
data using LSTM-AE have a lower mean, and lower variance,
indicating few outliers. Similar findings are observed when
accelerometer/gyroscope readings are missing.

The study also examined the effect of utilizing initial esti-
mates obtained from the Kalman Filter to train the deep learn-
ing models. However, incorporating these estimates did not
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Figure 23. RMSE for attitudes with acceleration data
missing
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Figure 24. RMSE for accelerations data missing

Figure 25. Predictions using LSTM-AE and EKF+LSTM-
AE

lead to any enhancement in the accuracy of imputation. This
indicates that the proposed method can discern the inherent
patterns in the data without requiring supplementary informa-
tion from the Kalman Filter

The research highlights the efficacy of deep learning meth-
ods in filling in missing sensor data in multicopters. The
suggested approach surpasses traditional imputation methods
with respect to accuracy and efficiency and can manage dif-
ferent levels of data sparsity making it a reliable and adaptable
solution.

The outcomes of this study hold significant implications for
the development and functioning of multicopters, emphasiz-
ing the need to address missing data to ensure secure and
optimal operation of these airborne devices. The presented
methodology holds promise for enhancing the safety and reli-
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Figure 26. RMSE comparison for LSTM-AE method with
EKF+LSTM-AE

ability of multicopters and has the potential to be implemented
in other areas grappling with the issue of missing data.
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