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ABSTRACT
This study presents a novel methodology for identifying nonlinear corrections to improve the accuracy of a physics-
based simulation model of a hexacopter using flight test data. Two distinct models are employed to capture the
dynamics of the hexacopter in hover: one model is identified from flight data, and the other utilizes a physics-based
blade element model with a 10-state Peter-He inflow. An input filter is extracted based on the difference between the
flight test data and frequency response from the physics-based model to make corrections. This improves the predic-
tions over the entire frequency range. For time domain analysis, the nonlinear corrections are identified by analyzing
correlations between different flight variables and utilizing a filtered dataset with high normalized correlation. Regu-
larized version of partial least squares is applied for identifying the correction terms. The performance of the updated
linearized model is compared with the physics-based model and system ID model in the time domain for all four axes.
It was observed that for low amplitude maneuvers, the performance of model with nonlinear corrections is comparable
to the model identified from flight test data and sometimes slightly better (2-5%). Predictions obtained using the cor-
rected model exhibit superior performance to those generated by the physics-based model, particularly in the vicinity
of peak values (8%-14%). For large amplitude maneuvers, the distinction is even more pronounced, and the model
with nonlinear corrections surpasses all other models in terms of accuracy. Notably, while the physics-based model
predictions exhibit an average error of 32% when compared to the flight test data, and the model identified using flight
test data generated predictions with an average error of 24%, the model with nonlinear corrections yielded predictions
with an average error of less than 10%.

NOTATION

x Vehicle x position
y Vehicle y position
z Vehicle z postion
φ Roll attitude
θ Pitch attitude
ψ Heading
u Longitudinal velocity
v Lateral velocity
w Heave velocity
p Roll rate
q Pitch rate
r Yaw rate
δthr Throttle control input
δele Longitudinal control input
δail Lateral control input
δthr Yaw control input
δuM Mixer inputs for sweep
Lv Speed damping - roll
Lp Pitch damping
Lδlat

Control derivative - Roll
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Mu Speed damping - pitch
Mq Roll damping
Mδlon

Control derivative - Pitch
Nr Yaw damping
ax Linear correction coefficient
bx Cubic correction coefficient
λ Regularization Factor

INTRODUCTION

Electric Vertical Takeoff and Landing (eVTOL) vehicles have
seen massive technological advancement in recent years. The
simple design of the drive systems and flexibility afforded by
electric power distribution have lowered the barriers to en-
try for eVTOL design. Despite lower prototyping cost, flight
simulation models of these eVTOL vehicles remain an invalu-
able tool for understanding these complex systems as they can
be used for simulating new designs, configurations, operating
conditions, or control strategies to explore their behavior.

A good simulation model reduces the need for costly experi-
ments or field tests, but insights gained from these simulation
models are contingent on the model being an accurate reflec-
tion of the underlying system. Accordingly, several groups

1



have developed means of correcting simulation models us-
ing flight test data to achieve the required fidelity (Refs. 1–5).
The techniques of system identification provide a systematic
framework for making corrections and enhancing a low-order
physics-based simulation model derived from first principles
and aircraft design data. It has been extensively used for fixed-
wing aircraft (Refs. 6–8) and rotorcraft (Refs. 4, 9, 10).

The implementation of system identification techniques on
conventional VTOL aircraft and their application on small-
scale multicopters have been well documented in the litera-
ture. For instance, Wei and Ivler utilized the frequency do-
main system identification tool CIFER® (Ref. 11) to generate
linear models of a quadcopter and hexacopter (Refs. 12, 13).
Similarly, the U.S. Army Combat Capabilities Development
Command Aviation and Missile Center conducted significant
research on system identification and controller optimization
for the IRIS+ quadcopter, with the aim of minimizing position
response to turbulence inputs (Refs. 14, 15). These endeavors
underscore the importance and potential benefits of employ-
ing advanced system identification methods.

NATO-AVT 296 summarizes the past several decades of tech-
nical work in the area of simulation fidelity improvement
(Ref. 16). Model corrections can be identified in both the fre-
quency domain (Refs. 17–22) and time domain (Refs. 23,24).
Methods such as gain/time delay corrections (Refs. 17–19)
and black box input/output filter corrections (Refs. 20–22) are
employed in the frequency domain and don’t modify the base-
line low-order model. Another popular fidelity improvement
method is force/moment increment which uses a comparison
of stability and control derivatives identified from flight tests
and simulation model to derive increments/decrements that
are added to the baseline model (Refs. 2,5). The additive sys-
tem identification approach for model fidelity improvement
developed by Agarwal et. al (Ref. 23) applied to B-412 flight
test data works in the time domain by identifying the deriva-
tives in sequence depending on the dominant force/moment
contribution to investigate the complex nonlinearities arising
form aerodynamic couplings.

Reduced order models have been utilized to improve the
baseline model by adding physics-based model structures for
higher order effects such as inflow dynamics, and rotor-wake
interference (Ref. 25). Model stitching has been combined
with other methods to further improve the simulation results.
In Ref. 26 the stitched model built from the identified 11-
DOF model is improved by a black-box input filter method
to account for unmodeled engine/drivetrain dynamics. Hui
et al. (Ref. 27) also implemented reduced order models for
updates at the edge-of-the-envelope maneuvers like takeoff,
autorotation, and landing.

Most of these conventional system identification approaches
process the complete time history, and therefore the identi-
fied derivatives represent an average for the whole maneuver.
The force contribution to a rotorcraft motion should be iden-
tified when they are strongest during the maneuver (Ref. 23).
Also, the corrections obtained by the frequency domain sys-
tem identification methods mentioned above are linear in na-

ture and thus only valid for “small-amplitude” maneuvers and
disturbances. These methods may fail to make suitable adjust-
ments for the nonlinear effects arising from large-amplitude
maneuvers, which unmanned drones are capable of executing.

The objective of this study is to leverage machine learning
techniques to identify nonlinear corrections to a physics-based
model using flight test data. The flight test data is analysed to
identify instances of high correlation between different flight
variables. This filtered dataset is then used to accurately iden-
tify the required corrections to the existing model, thereby im-
proving its accuracy and effectiveness.

METHODOLOGY AND ANALYSIS

Figure 1: MOVE Hexacopter

The platform used in this study is MOVE hexacopter (Fig. 1).
It is based on Tarot 680 Pro frame and has Cube Orange flight
controller (Ref. 28) installed onboard. Detailed specifications
of the aircraft are provided in Table 1. Two modeling methods
are used for the hexacopter: frequency domain system iden-
tification using CIFER® (Ref. 11), and the Rensselaer Multi-
copter Analysis Code (RMAC) (Ref. 29) which is a physics-
based modeling method. These models are discussed in the
following section.

Table 1: Specifications for Hexacopter

Aircraft
Weight, with battery 2.5kg

Hub-to-Hub 680 mm
Motor Weight 93 gm

Kv Rating 380 RPM/V
Rotor diameter 330 mm

Rotor Weight (each) 15 gm
Rotor Pitch 4.8 in
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Frequency-Domain System Identification

Frequency domain system identification is a process to extract
flight-accurate state-space models of the vehicle via frequency
responses. For the present study, frequency sweeps were per-
formed about hover. The automated sweeps were injected at
the control mixer (Fig. 2). The data is collected using system
ID mode in Ardupilot. Inputs, uM (δlat ,δlon,δyaw, and δthr) are
measured at the input to the mixer and measured outputs (y)
include angular rates (p,q,r), angular attitudes (φ , θ , ψ), and
accelerometer readings (ax,ay, az). The frequency responses
of the multirotor vehicle are identified from the mixer input
to the aircraft response, for example, p/δlat . The model’s pre-
dictive ability can be tested by verifying the performance with
flight doublets in the time domain (Ref. 11).

Identification of state-space models relative to the mixer in-
puts is performed by optimizing the parameters in the state-
space model to best fit the identified frequency responses from
flight data. Since the present multicopter configuration has de-
coupled vehicle dynamics in hover, two 2-DOF models (roll
and pitch), and two 1-DOF models (heave and yaw), can be
identified independently. The model structure for dynamics
in the four axes is given in Eqs. 1-4. Included in Eqs. 1-4 are
first-order filters representing the rotational dynamics of the
rotors.


v̇
ṗ
φ̇

Ṫlat

=


Yv 0 g 0
Lv Lp 0 Lδlat
0 1 0 0
0 0 0 −ωlag




v
p
φ

Tlat

+


0
0
0

ωlag

[δlat
]

(1)


u̇
q̇
θ̇

Ṫlon

=


Xu 0 −g 0
Mu Mq 0 Mδlon
0 1 0 0
0 0 0 −ωlag




u
q
θ

Tlon

+


0
0
0

ωlag

[δlon
]

(2)

[
ṙ

Ṫyaw

]
=

[
Nr Nδyaw

0 −ωlag

][
r

Tyaw

]
+

[
Nδyaw

ωlag

][
δyaw

]
(3)

[
ẇ

Ṫthr

]
=

[
Zw Zδthr
0 −ωlag

][
w

Tthr

]
+

[
0

ωlag

][
δthr
]

(4)

Rensselaer Multicopter Analysis Code

The Rensselaer Multicopter Analysis Code (RMAC) is a
physics-based tool designed for the comprehensive analysis
of multicopters. The vehicle is modeled as a 6-DOF, second-
order dynamic rigid body. The equations of motion are rewrit-
ten in first-order form by introducing kinematic states for the
position and attitude of the aircraft, whose derivatives are
given by Eq. 5-6, where the 3x3 matrix R represents a rotation
matrix that rotates a vector from the body-attached reference
frame to the inertial reference frame, and matrix B expresses

the rates of change of the 3-2-1 Euler angles in terms of the
body angular velocities.

ẋ
ẏ
ż

= R

u
v
w

= RV⃗ (5)

φ̇

θ̇

ψ̇

= B

p
q
r

= Bω⃗ (6)

The linear and angular accelerations of the hexacopter can be
evaluated through a simple summation of forces and moments
about the center of gravity. The forces include gravity, drag,
and rotor forces. Fuselage drag and rotor forces also induce
moments about the center of gravity. Coriolis and inertial cou-
pling effects are also included since the equilibrium equations
are resolved in the non-inertial body-attached reference frame
(Eq. 7 and 8).

 u̇
v̇
ẇ

= RT

0
0
g

+ 1
m

(
D f uselage +

6

∑
i=1

F

)
− ω⃗ ×V⃗ (7)

ṗ
q̇
ṙ

= I−1

(
r⃗D ×D f uselage +

6

∑
i=1

(Mi + r⃗i × F⃗i)

)
(8)

RMAC calculates the rotor forces and moments using blade
element theory and a 10-state Peters-He dynamic inflow
model (Ref. 30). The inflow dynamics take the form of Eq. 9

M
∗
α +V L−1

α =
1
2

τ (9)

The motors are modeled as DC motors with negligible in-
ductance, with the dynamics taking the form of Eq. 10, and
manufacturer-specified values for the motor parameters Kt
(torque constant) and Ra (armature resistance). This model
requires a throttled voltage input (Vi) to model the motor, so
a conversion factor from the recorded PWM outputs is also
identified prior to model comparison.

JΩ̇i =
Kt

Ra
Vi −

K2
t

Ra
Ωi −Qi (10)

Linear approximations to the dynamics can be generated by
perturbing the aircraft states about a trim condition and es-
timating stability derivatives using a centered difference ap-
proximation. Similarly, control derivatives can be evaluated
by perturbing the control inputs about the equilibrium condi-
tion. Both predictions of the inflow and motor dynamics are
high-frequency (relative to the rigid body dynamics) and sta-
ble, and therefore the associated states are removed via static
condensation, which results in a 12-state, 4-input-state space
model (Eq. 11-14).

3



Figure 2: Block Diagram for System Identification Process using Flight test data

[
ẋR
ẋI

]
=

[
ARR ARI
AIR AII

][
xR
xI

]
+

[
BR
BI

]
u (11)

ẋR =ĀxR + B̄u (12)

Ā =ARR −ARIA−1
II AIR (13)

B̄ =BR −ARIA−1
II BI (14)

Methodology for Identifying Nonlinear Corrections

This section describes the proposed methodology for identi-
fying nonlinear corrections. The corrections are applied to
the physics-based linearized model of the hexacopter (low-
fidelity model). For a linearized system, the roll acceleration
is given by Eq. 15

ṗ = Lp p+Lvv+Lδlat
δlat (15)

where ṗ is the roll acceleration, p is the roll rate, v represents
lateral velocity, and δlat is the control input. The stability and
control derivatives are assigned numerical values based on the
linearized RMAC model. To model nonlinear dynamics, the
above equation is updated with cubic terms in p and v. The up-
dated roll acceleration is given in Eq. 16. The coefficients aLp

and aLv represent corrections to the linear dynamics predicted
by RMAC, while bLp and bLv represent nonlinear effects.

ṗ =LpRMAC p(aLp +bLp p2)+LvRMAC v(aLv +bLvv2)

+Lδlat
δlat

(16)

To identify numerical values for the a and b coefficients, 2480
seconds of flight test data are analyzed. A naive way of iden-
tifying these parameters would be to use all the data and fit a
polynomial function that meets the required tolerance. Since
the data is acquired from flight tests on different days with dif-
ferent conditions, disturbances including noise can lead to a
poor fit if the model is not tuned appropriately. Also, the data
at the start and end of a flight test is not particularly useful
to predict the nonlinear behavior of the aircraft. With these
in consideration, this study makes use of the correlation be-
tween different flight variables recorded during the flight tests
to identify ideal data for identification.

Fig. 3 shows 40 seconds of roll acceleration ( ṗ, Fig. 3a), roll
rate (p, Fig. 3b), and lateral velocity data (v, Fig. 3c). This
data is pared down based on the correlation between the roll
acceleration and the roll rate or lateral velocity. To identify in-
tervals of high correlation, the data is broken into one-second
intervals (bins), and the correlation within each interval is
evaluated, and the normalized correlation values are calcu-
lated (Figure 4). Bins where the absolute value of correla-
tion between ṗ and p exceeds 0.5 (represented by dotted black
lines in Fig. 4) are used to identify corrections to Lp (aLp and
bLp ). Bin 22 highlighted in Fig. 4 represents one of the bins
used for the exercise. Similarly, all the bins are examined and
a filtered dataset with high correlation between ṗ and p is ex-
tracted from the entire dataset. A similar process is used for
identifying corrections to speed damping Lv (aLv and bLv ).

These parameters are identified using a machine learning
algorithm called Regularized Partial Least Squares (RPLS,
Ref. 31, 32). RPLS is a modified version of Partial Least
Squares (PLS) that includes a regularization penalty to pre-
vent overfitting and improve the model’s predictive perfor-
mance. This is important since the data is noisy. The model
is cross-validated to evaluate the performance of the model
by splitting the data into training and validation sets multiple
times and computing the average performance metric (RMSE)
across all splits.

The optimization problem is given by

min
c,W

||Y −XWcT ||2 +λ (||W ||2 + ||c||2) (17)

where X is the predictor variable, Y is the response variable,
and λ is the regularization parameter, W is the PLS weight
matrix and c is the PLS weight vector and can be used to ex-
tract the coefficients a and b by the dot product of appropriate
row of W with c (Refs. 32,33). First, the data is normalized or
scaled as necessary to ensure that variables with larger magni-
tudes do not dominate the analysis. The guidelines specified
in Ref. 11 (1 f t = 1 f t/s = 1deg = 1deg/s) are used. The data
is then split into training and testing sets. For this study, 80%
data is used for training (and validating) and the remaining
is reserved for testing. The hyperparameter in this study is
the regularization parameter λ , which determines the shrink-
age applied to the coefficients of the predictor variable. Once
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Figure 3: Flight test data

Figure 4: Correlation of p, and v with ṗ

the model is trained, the generalization characteristics of the
trained model can be tested on the test set and the hyperpa-
rameter can be tuned.

The final equation for the roll rate ( ṗ), lateral velocity (v), and
roll (φ ) after identifying the corrections is given in Eq. 18

ṗ =LpRMAC p(0.03+0.6p2)+LvRMAC v(0.65+0.62v2)

+Lδlat
δlat

v̇ =YvRMAC v(0.85+0.12v2)−gφ

φ̇ =p

(18)

Similarly, the corrections for other axes can be identified. The
updated equations are given in Eq. 19-21.

q̇ =MqRMAC q(0.05+0.6q2)+MuRMAC u(0.72+0.42u2)

+Lδlon
δlon

u̇ =XuRMAC v(0.85+0.12v2)−gθ

θ̇ =q

(19)

ṙ = NrRMAC r(0.18+0.1r2)+Nδyawδyaw (20)

ẇ = ZwRMAC w(0.48+0.05w2)+Zδthr
δthr (21)

RESULTS

Frequency Domain

The fidelity of models derived through the systematic pro-
cess of system identification, and using RMAC, is evaluated
against flight test data in the frequency domain. The model
structure outlined in Eq. 1-4 is used for both cases. For the
system identification model, theoretical accuracy parameters,
Cramér Rao (CR) bounds and insensitivity (I) are also re-
ported (Ref. 11). These parameters carry substantial signif-
icance in the process of determining the model structure, ow-
ing to their role in eliminating the stability and control deriva-
tives that exhibit weak theoretical accuracy/importance and
are unidentifiable/irrelevant. It is desired that CR < 20%, and
I < 10%. For the RMAC model, these parameters are not used
since the parameters are directly identified using a perturba-
tion method.

The resulting stability and control derivative values for both
models are shown in Table 2. The parameters not shown in the
table have zero values. It is important to note that the model
was subjected to constraints to ensure the preservation of sym-
metry in the underlying physics. For example, the identified
model was set up so that Xu = Yv and Lv =−Mu.

The verification of the models in the frequency domain is car-
ried out qualitatively by overlaying the predictions from the
models with the flight test data. Fig. 5 and 6 show the fre-
quency response validation for roll attitude and roll rate from
lateral input, respectively. The black solid line in these figures
represents the flight test data. The orange dashed and yellow
dashed lines represent the frequency response obtained using
the model identified in CIFER® and the linearized RMAC
model, respectively. The results clearly illustrate that the
system identification model has an excellent fit and RMAC
overpredicts the gain and phase across the frequency range.
This occurs because the manufacturer-reported motor param-
eters result in motor dynamics that are significantly faster than
those identified from the flight test data.

Based on the difference in gain and phase between the flight
test and RMAC, a first-order error function can be identified.
Fig. 7 shows the error between the model identified from the
flight test and RMAC (plotted in solid blue) and its first-order
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Figure 5: Hover Frequency Response:
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Table 2: Stability and Control Derivatives

Stability Derivatives
CIFER RMAC

Value CR(%) I(%) Value
Xu(1/s) 0 - - -0.05
Yv(1/s) 0 - - -0.05
Zw(1/s) -0.22 19.8 9.4 -0.55

Lv(rad/m− s) -1.67 6.32 2.42 -2.39
Lp(1/s) 0 - - -2.21

Mu(rad/m− s) 1.67 6.32 2.42 2.39
Mq(1/s) 0 - - -2.21

Mw(rad/(m− s)) 0 - - 0
Nr(1/s) 0 - - -0.17

ωlag(rad/s) 15.4 11.2 4.8 -
Control Derivatives

Zδthr

(
m/s2

%/100

)
-35 3.35 2.14 -42.2

Lδlat

(
rad/s2

%/100

)
58.6 3.38 1.98 36.2

Mδlon

(
rad/s2

%/100

)
58.6 3.84 1.78 36.2

Nδyaw

(
rad/s2

%/100

)
38.4 5.42 1.22 26.7

approximation (plotted in solid red). The first-order function
approximates the error well. This error function evaluated for
the roll axis is given in Eq. 22. This error function can be
used as an input filter for correction by placing it upstream
of the baseline model (Figure 8). The updated frequency re-
sponse, for roll and roll rate with the input filter, is represented
by the purple dashed line in Fig. 5 and 6. The predictions
after including the input filter move the curve closer to the
CIFER®identified model.
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Figure 7: First order approximation of the difference between
model identified from flight test, and RMAC

ERoll = 0.71
15.5

s+15.5
(22)

Figure 8: Input Filter

Similarly, for pitch attitude and pitch rate, the frequency re-
sponse is presented in Fig. 9 and Fig. 10 respectively. The
behavior is similar to the roll axis, which is expected because
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Figure 11: Hover Frequency Response:
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Figure 12: Hover Frequency Response :
az

δthr

of the symmetry of the aircraft. The frequency response for
yaw and heave are shown in Fig. 11 and 12 respectively. Upon
implementing the input filter corrections, the model demon-
strated a notable improvement in accuracy across the entire
frequency spectrum.
Next, to quantify the performance of these models, they can
be compared using a cost function. The cost function is calcu-
lated by a weighted sum of time and frequency domain errors
given by Eq. 23 (Ref. 11).

Jt =
20
nω

ωn

∑
ω1

Wγ [Wg(|T̂c(ω)|− |T (ω)|)2

+Wp(̸ T̂c(ω)− ̸ T (ω))2]

(23)

where |T |, ̸ T are the flight frequency response gain (dB) and
phase (deg), |T̂c|, ̸ T̂c are the model frequency response gain

and phase. Magnitude and phase error weightings are Wg = 1,
and Wp = 0.01745. The coherence (γ) weighting employed
in the cost function prioritizes the most precise (highest co-
herence) data by assigning them greater weightage. The cost
can be calculated for each of the frequency responses that are
included in the parametric model identification. A cost of
Ji < 100 indicates an accurate model for that response and
a cost of Ji < 50 is considered indistinguishable from the true
model.

Table 3 compares the cost of fits obtained using different mod-
els. The cost of the system ID model is excellent for all re-
sponses, which is expected since the model was identified di-
rectly from flight test data. The costs associated with RMAC
are significantly higher (> 100). When the simulation model
is updated with an input filter, there is a substantial reduction
in cost (85%-90%) and the cost is comparable to the model

7



identified from flight test data.

Table 3: Frequency Domain Verification Costs for System ID,
RMAC and Corrected Models

CIFER RMAC RMAC
+ Input Filter

φ

δail
42.6 482 46.6

p
δail

52.1 416 62.4

θ

δele
62.4 476 68.2

q
δele

56.4 482 58.6

r
δrudd

48.2 568 58.2

az

δthr
44.4 520 62.8

Time Domain

The verification of system identification models in the time
domain constitutes a crucial final step in the validation process
of models developed in the frequency domain. It is essential to
test the robustness of the model against a different dataset and
input signal to ensure that it is not excessively tuned to the data
utilized to derive the frequency responses. Robustness to input
variation is a fundamental indication that the model accurately
represents the underlying physical processes and is not merely
a generic curve fit of the data. When nonlinear corrections are
applied, time domain verification is particularly significant,
as it provides valuable insights into the predictive ability of a
model that cannot be represented in the frequency domain.

First, consider the verification in the roll axis using different
modeling methods in the time domain. The results are shown
in Fig. 13, where Fig. 13a depicts the roll input, Fig. 13b
shows the roll attitude, and 13d displays the roll rate. The
flight test data is represented by the black solid line, while the
predictions using the CIFER®-identified model is shown by
the orange dashed line. These predictions are nearly indistin-
guishable from the flight test data. In contrast, the predictions
from the RMAC model (yellow dashed) exhibit some magni-
tude overshoot relative to the flight test data.

Next, the performance of RMAC model with an input filter
(Fig. 8) is evaluated. The results are shown in the purple
dashed line in Fig. 13b and 13d. This approach yielded bet-
ter performance in the frequency response plots (Fig. 5-9) as
well. Additionally, predictions after applying nonlinear cor-
rections evaluated using Eq. 18, are presented by the green-
dashed line in Fig. 13b and 13d. The exhibited predictions are
excellent and outperform both the CIFER®-identified model
and the RMAC model updated with input filter near peaks.

These results are also reflected in the error plots for roll
(Fig. 13c) and roll rate (Fig. 13e), where the error for the
model identified from the flight test data (orange dashed) and

the model corrected using identified derivatives (plotted in
green dashed) is close to zero for the entire duration. In
contrast, the error using the RMAC model (yellow dashed)
reaches 6◦ around 1 second. However, this error is signifi-
cantly reduced when an input filter is used to make corrections
(plotted in purple dashed). The verification of the roll axis
using different modeling methods in the time domain demon-
strates that identified corrections can improve the accuracy of
aircraft models to perform as well as the model identified from
flight test data.

Similar verification exercises are carried out for the pitch
(Fig. 14), yaw (Fig. 15), and heave axes (Fig. 16) using the
same modeling methods in the time domain. The results show
that identified corrections can improve the accuracy of aircraft
models for these axes as well. The CIFER® model and mod-
els with nonlinear corrections produce predictions that closely
match the flight test data, while the RMAC model exhibits
overshoot in most cases. The input filter also proves to be
an effective tool in improving the performance of the RMAC
model for these axes. The models corrected with identified
nonlinear corrections produce predictions that are comparable
to or better than the CIFER®-identified model, demonstrating
the importance of identified corrections in enhancing the ac-
curacy of aircraft models in the time domain.

To quantitatively compare the performance, the time domain
verification cost (Eq. 24) is evaluated.

Jrms =

√
1

ntno

nt

∑
i=1

(ydata − y)TW (ydata − y) (24)

where ydata is the time-history vector from the flight data, y is
the model time-history vector, nt is the number of time-history
points in the data record, and W = no×no is a diagonal matrix
of weighting factors for each output. Ref. 11 has established
the desired time domain cost for full-scale vehicles, which has
been thoroughly examined. According to Ref. 11, achieving
a predictive accuracy of Jrms < 1 is deemed excellent, while a
range of 1 < Jrms < 2 is considered acceptable. To determine
the scaled costs for a smaller vehicle relative to the UH-60

Froude scaling was employed
(

N =
Dhub−to−hub

DUH−60
= 24.5

)
.

If the scaling is included, Jrms < 4.95 would indicate excel-
lent predictions, and a range of 4.95 < Jrms < 9.90 would be
considered acceptable.

A normalized cost function, known as Theil inequality coef-
ficient(TIC) (Eq. 25), is also evaluated for all models since it
does not need to be scaled with vehicle size (Ref. 11). Jrms
and T IC are summarized in Table 4 for all the axes.

T IC =
Jrms√

1
ntno

∑
nt
i=1(y)

TW (y)+
√

1
ntno

∑
nt
i=1(ydata)TW (ydata)

(25)

The results indicate that the system ID model has excellent
predictive accuracy with Jrms and T IC well within guidelines.
With the input filter applied, the RMAC model has excellent
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Figure 13: Time domain validation: Roll axis

0 0.5 1 1.5 2 2.5

time(s)

-15

-10

-5

0

5

10

15

lo
n
 (

%
)

(a) Pitch Input

0 0.5 1 1.5 2 2.5

time

-10

0

10

20

 (
d
e
g
)

Flight Test

CIFER

RMAC

Input Filter + RMAC

Correction + RMAC

(b) Time domain validation: θ

0 1 2 3 4 5

time(s)

-5

0

5

e
rr

o
r 

(d
e

g
)

(c) Error from all models: θ

0 0.5 1 1.5 2 2.5

time

-60

-40

-20

0

20

40

60

80

q
 (

d
e
g
/s

)

Flight Test

CIFER

RMAC

Input Filter + RMAC

Correction + RMAC

(d) Time domain validation: q

0 0.5 1 1.5 2 2.5

time(s)

-20

-10

0

10

20

e
rr

o
r 

(d
e

g
)

(e) Error from all models: q

Figure 14: Time domain validation: Pitch axis
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Figure 15: Time domain validation: Yaw axis
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Figure 16: Time domain validation: Heave axis

Table 4: Time Domain Verification Costs for System ID, RMAC and Corrected Models - Low Amplitude

Roll Pitch Yaw Heave
Jrms T IC×100 Jrms T IC×100 Jrms T IC×100 Jrms T IC×100

CIFER 2.24 6.54 2.40 7.8 2.12 5.4 1.5 22.4
RMAC 7.54 18.6 7.82 19.2 8.12 19.6 7.25 31.2

RMAC + Input Filter 3.26 8.54 3.46 8.62 2.20 7.58 2.12 24.6
RMAC + Corrections 2.20 4.65 2.20 5.24 1.46 3.24 1.24 18.2
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predictive accuracy, and the nonlinear corrections are com-
parable or superior to the CIFER®-identified model. Apply-
ing input filter corrections also lowers the T IC by more than
50% from the RMAC model for the roll, pitch, and yaw axis.
The predictions are almost 70% - 84% more accurate with
CIFER®-identified model and model with non-linear correc-
tions.

Time Domain Verification - High Amplitude

With the performance of different models established for low-
amplitude maneuvers, the next step is to examine the po-
tential of corrected models with large-amplitude maneuvers,
which are expected to have nonlinear effects. Since CIFER®-
produced models are necessarily linear, they cannot include
any nonlinear effects. Thus, it is expected that the RMAC
model with nonlinear corrections will generally outperform
the CIFER® model.

First, consider the roll axis predictions. The models’ predic-
tions are overlaid with flight test data to evaluate their accu-
racy in Fig. 17 for a high amplitude maneuver. The maximum
roll attitude that the aircraft achieves is 41◦ (at 1 second). The
predictions for roll (Fig. 17b) and roll rate (Fig. 17d) using
all models are accurate during the start of the maneuver, as
seen by the close grouping of CIFER®-identified (plotted in
dashed orange), RMAC (plotted in dashed yellow), model cor-
rected using input filter (plotted in dashed purple), and non-
linear corrections (plotted in dashed green) curves. However,
these curves start to separate as the roll attitude reaches its
maximum amplitude (around 1 second).

The aircraft maintains a steady roll attitude of 37◦ till 3 sec-
onds before the attitude starts to drop again. The predictions
using CIFER®-identified model have almost a steady error of
6◦ as shown by the orange dashed line in Fig. 17c. The analy-
sis reveals that the predictions generated by the physics-based
RMAC model exhibit a fluctuating error of around 10◦ dur-
ing the high-amplitude aircraft maneuver (Fig. 17c, plotted in
dashed yellow). Such unpredictability in the model’s predic-
tions could significantly impact the reliability and safety of
autonomous systems that rely on these predictions. The er-
ror comes down to 6◦ when an input filter is used with the
RMAC model (plotted in dashed purple). Finally, the pre-
dictions generated by the nonlinear corrections (Eq. 18) are
found to be highly accurate, with an error of just 1◦ for most
of the maneuver duration (Fig. 17c, plotted in dashed green).

The results of the analysis for pitch (Fig. 18), yaw (Fig. 19),
and heave axis (Fig. 20) corroborate those obtained for the roll
axis, indicating that the trends and observations were consis-
tent across all axes. The accuracy of the models’ predictions
at the start of the maneuver, followed by the reduction in ac-
curacy as the aircraft approached its maximum amplitude, is
a common trend observed in all axes.

However, the inclusion of nonlinear corrections is found to
be crucial for improving the accuracy of model predictions
across all axes. The analyses demonstrate that the models’

predictions achieve minimal errors when nonlinear correc-
tions are incorporated, highlighting the importance of consid-
ering nonlinear effects in model development for all axes.

Overall, the results of the analysis indicate that the models’
predictions outperform the CIFER®-identified model for all
axes. These findings have significant implications for the de-
velopment of autonomous systems, as accurate and reliable
predictions of aircraft behavior are critical to ensuring the
safety and efficiency of such systems.

The Jrms and T IC values for all the entire test dataset using dif-
ferent modeling methods are shown in Table 5. The analysis
reveals that the RMAC model exhibits a larger error in pre-
dicting the aircraft’s behavior compared to the other models
resulting in higher Jrms and T IC values for the RMAC model,
which fail to meet the guidelines set for acceptable predictive
accuracy.

The model corrected using nonlinear corrections exhibits the
highest predictive accuracy with Jrms and T IC values well
within the guidelines. The incorporation of nonlinear correc-
tions enables the model to capture the nonlinearities in the air-
craft’s behavior more accurately, leading to better predictive
performance. The performance is better than the predictions
from the CIFER®-model (29% - 62%). Furthermore, the im-
plementation of the input filter results in a significant reduc-
tion in Jrms (40% - 62%) compared to RMAC, indicating an
improvement in predictive accuracy.

The findings highlight the importance of incorporating non-
linear corrections to improve the predictive accuracy of au-
tonomous systems, particularly in high-amplitude maneuvers.

CONCLUSIONS

This study examines a method for identifying nonlinear
corrections to a physics-based multicopter flight simulation
model using flight test data. A model is identified from the
flight test data for comparing the performance of the cor-
rected models. Based on the physics-based model and identi-
fied response from flight test data, an input filter is extracted,
which is utilized to make linear corrections to the physics-
based model in both the frequency and time domains.

To improve the predictions for high-amplitude maneuvers
where the linear models provide inaccurate predictions, the
stability derivatives for all four axes are supplemented with
corrections in linear terms and additional cubic terms. To
identify the nonlinear corrections to the physics-based model,
the flight test data is examined to find regions with high corre-
lations between different flight variables. Regularized Partial
Least Squares is employed to ensure that the model is robust
to noise and generalizes well.

In the frequency domain, the addition of an input filter im-
proves the prediction across the frequency range and brings
the RMAC model close to the CIFER® model. The predic-
tions after applying corrections are excellent, especially in the
high-frequency range critical to control design.
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Figure 17: Time domain validation - High Amplitude: Roll axis
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Figure 18: Time domain validation - High Amplitude: Pitch axis
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Figure 19: Time domain validation - High Amplitude: Yaw axis
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Figure 20: Time domain validation - High Amplitude: Heave axis

Table 5: Time Domain Verification Costs for System ID, RMAC, and Corrected Models - High Amplitude

Roll Pitch Yaw Heave
Jrms T IC×100 Jrms T IC×100 Jrms T IC×100 Jrms T IC×100

CIFER 10.9 24.4 11.8 22.4 9.5 17.4 2.24 30.4
RMAC 18.4 36.8 18.6 37.4 14.5 27.6 4.62 39.4

RMAC + Input Filter 11.2 27.6 12.4 27.4 10.7 22.0 2.64 32.6
RMAC + Corrections 6.64 9.80 6.36 10.2 5.24 12.2 1.98 30.0

To further validate the model corrections, low- and high-
amplitude maneuvers were executed. For low amplitude ma-
neuvers, the performance of the linearly corrected model is
comparable to the identified model, exhibiting superior per-
formance to predictions from the physics-based model, es-
pecially in the vicinity of peak values reducing the average
error by 14%. Additionally, when predictions are generated
using the model corrected with nonlinear corrections, the er-
ror reduces by 10% - 24% in comparison to the physics-based
model. This model with identified corrections performs 2% -
5% better than the model identified from the flight test data.

For high-amplitude maneuvers, the distinction is even more
pronounced. Notably, the model with nonlinear corrections
surpasses all other methods in terms of accuracy. While the
physics-based model predictions exhibit an average error of
32% when compared to the flight test data, and the model
identified using flight test data generated predictions with an
average error of 24%, the model with nonlinear corrections
yields predictions with an average error of less than 10% for
roll, pitch, and yaw axis. The performance in the heave axis is

24% better than the physics-based model. These results high-
light the potential of utilizing nonlinear corrections to enhance
the accuracy of multicopter flight simulation models.
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