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ABSTRACT

A robust framework for fault detection and identification of rotor faults in multicopters is validated with data from
experiments with a quadcopter and a hexacopter. The rotor fault detection and identification methods employed in this
study are based on excitation-response signals of the aircraft under atmospheric disturbances. A concise overview of
the development of the statistical time series model for healthy aircraft using the aircraft attitudes as the output and
controller commands as the input is presented. This model is utilized to extract quality features for training a simple
neural network to perform effective online rotor fault detection and identification. A proper justification of choosing
the method of time-series assisted neural network has been given. It is shown a statistical time-series assisted neural
network employed for online monitoring in the quadcopter and hexacopter achieves accuracy over 96% and 95%,
respectively. It is effective under gusts and experimental variability encountered during outdoor flight and is sensitive

to even partial loss of rotor thrust.

NOTATION
Y Autocorrelation
T Lag
X : Residual covariance matrix
ARX AutoRegressive with eXogenous excitation
BIC Bayesian Information Criteria
CCF Cross-Covariance Function
E{} Expected value
FDI Fault Detection and Identification

iid . identically independently distributed

IMU Inertial Measurement Unit

LS Least Squares

PE Prediction Error

PSD Power Spectral Density

RSS Residual Sum of Squares

SPP Samples Per Parameter

SPRT Sequential Probability Ratio Test
SSS Signal Sum of Squares

VAR Vector AutoRegressive

NN Neural Network

ML Machine Learning

TSNN Time-Series Assisted Neural Network
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INTRODUCTION

Advanced aerial mobility (AAM), fueled by the develop-
ment of autonomous electric vertical take-off and land-
ing (eVTOL) rotorcraft is set to revolutionize on-demand
parcel delivery in major cities. According to a report by
McKinsey Company, there will be 1.5 million drone de-
liveries in 2022 alone (Ref. 1). Given the highly con-
strained nature of such systems operating with a mini-
mum of sensing and computational power, reliable fault
detection and identification (FDI) of their components are
critical. Actuator fault mid-air can create a safety hazard
for persons in the surroundings. Thus it must be ensured
that the drone is not only capable of detecting occurring
failures but also of remaining airworthy and navigable at
any time. Online information about system faults can fa-
cilitate safe landing through mitigating control and en-
able Condition Based Maintenance (CBM) via continu-
ous monitoring of system faults. Therefore, the current
research is driven toward realizing real-time system-level
awareness and decision-making, utilizing in-flight data
streams.

Multicopters have been identified as a potential plat-
form for future AAM aircraft development due to their
rotor redundancy, design flexibility, ability to integrate
distributed electric propulsion, and their superior fault
compensation capabilities. However, they exhibit strong
non-linear dynamic coupling between rotors, structural
components, fuselage, and control inputs, as well as



time-varying cyclo-stationary behavior, and pose sig-
nificant system identification and fault detection chal-
lenges when compared to fixed-wing aircraft. These is-
sues have been addressed by (i) analytical model repre-
sentations (Refs. 2-5), (ii) signal processing techniques
(Refs. ), and (iii) computational intelligence ap-
proaches (Refs. 11-18) — for a detailed review refer to
Ref. 19. However, the available studies are either lim-
ited by analytical model building with the assumption
of physical knowledge of the system available, arbitrary
thresholds for detecting faults, or mostly concentrate on
structural faults of blades, propellers, powertrain, etc.
in rotorcraft. Some studies using data-driven methods
are as follows. Ganguli et al. (Ref. 12) and Morel et
al. (Ref. 11) employed neural networks (NN) to detect
and trace faults and defects of helicopter rotor blades us-
ing noise-contaminated vibration data. Multicopter ro-
tor structural damage detection and identification and has
been demonstrated by lannace et al. in Ref. with
acoustic signals and neural networks and by Bondrya et
al. in Ref. 17 via support vector machines based on mea-
surements of acceleration from the onboard IMU (In-
ertial Measurement Unit). Accurate blade fault detec-
tion and identification on a quadrotor using experimen-
tal airframe vibration signals were achieved with wavelet
packet decomposition based features as input to a NN in
Ref. (Ref. 18).

These limitations were collectively addressed by the au-
thors via the use of stochastic time series representa-
tions of the multicopter dynamics based on flight sig-
nals (aircraft attitudes) without requiring knowledge of
the system properties in Refs. 20-22. The rotor FDI ap-
proaches were developed within a statistical framework
to account for operating and environmental uncertainty
through properly defined statistical thresholds under pre-
determined confidence levels. Fast and accurate online
rotor failure detection and identification on a hexacopter
flying forward under different turbulence levels and un-
certainty as well as varying forward velocity and gross
weight were achieved (Refs. 20,2 1). Dutta etal. also pro-
posed an innovative time-series assisted neural network
(TSNN) for online rotor FDI followed by discrete quan-
tification, wherein dynamically explainable features, act-
ing as the input layer of the NN, were extracted from a
statistical time-series model of the healthy aircraft. Its
robust FDI performance under wind gusts with high ac-
curacy and very small decision-making time was demon-
strated in Refs. 23,

The objective of the present study is to experimentally
validate the data-driven methods for early rotor FDI in
multicopters developed in Refs. 20,23. Fault information
in real-time can facilitate subsequent implementation of
active fault tolerant control systems, planning alternative
trajectories with limited control authority depending on

Figure 1: Parrot Mambo Quadcopter ©Parrot Inc.

the actuator fault severity, or reconfiguration of the vehi-
cle to complete a safe flight in the event of rotor fault.
This paper demonstrates the rotor fault detection and
identification scheme on two aircraft, namely, the Parrot
minidrone (quadcopter) and a self-built hexacopter. The
data collection followed by the development of the data-
driven methods have been discussed. It consists of two
phases: the baseline training phase and the inspection
phase. In the baseline phase, the input-output relation-
ship of the healthy signals is represented by a stochas-
tic time-series model, followed by training a machine-
learning based algorithm to perform classification with
the features extracted from the healthy model. This al-
gorithm is a simple hidden layer neural network, which
is termed time-series assisted neural network (TSNN).
In the inspection phase, test signals have been filtered
through the healthy model, and the residual crosscorrela-
tion based feature input to the TSNN to detect and iden-
tify a rotor fault, simultaneously. The summary results
show high accuracy with a few test sets, and an ablation
study has also been performed to justify the need of the
stochastic model along with a neural network.

DATA GENERATION

Quadcopter

The Parrot Mambo Quadcopter shown in Fig. | is the
main source of the flight data. The Parrot Minidrones
Support from Simulink and Simulink Coder available in
MATLAB is used for building the designed controller
onto the hardware to command different flight maneuvers
such as hover, forward flight, coordinated turns, etc., in-
duce rotor faults of various magnitudes, and collect the
in-flight sensor data streams.

The schematic of the flight controller in position control
mode is designed as a PID-based control scheme with
an outer and inner loop, shown in Fig. 2. The aircraft
states are estimated via a combination of complemen-
tary and Kalman filters using the readings from the sen-
sors mounted on the minidrone. The ultrasound sensor
measures the distance of the minidrone above an object
or surface and the pressure sensor measures the altitude.
The camera with help of an image processing algorithm
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Figure 2: Controller Block and fault simulation in the minidrone

known as the optical flow determines the horizontal mo-
tion and speed of the aircraft. The Inertial Measurement
Unit (IMU) contains a 3-axis accelerometer and a 3-axis
gyroscope which measure the linear accelerations and the
angular rates, respectively. After the controller outputs
the required moments and thrust, the motor mixing ma-
trix converts them into 4 commanded rotor speeds to be
input to the plant. The aircraft dynamics block calcu-
lates the total forces and moments on the aircraft cen-
ter of gravity and outputs the aircraft states. The forces
and torques produced by the rotors are calculated assum-
ing that they are proportional to the square of the rotor
speeds, and are transformed from the rotor hub frame to
the aircraft’s center of gravity. The rotor in-plane forces
are estimated as a fraction of rotor thrust based on a sim-
plified blade element theory.

The raw signals coming from the sensors have been
recorded during hover under healthy and degraded ro-
tor conditions. These signals are corrupted by the sensor
noise, disturbances, and uncertainty during flight experi-
ments. A single front rotor degradation of 10 and 20 % is
simulated by multiplying the controller commanded ro-
tor speed with a factor of 0.9 and 0.8, respectively, at the
time of commencement of the rotor fault. With no fault-
tolerant controller in place, the minidrone crashes under
higher degradation levels because the rotor speeds reach
their saturation limit trying to compensate for the loss of
thrust. The summary of the datasets obtained from flight
experiments of the parrot minidrone is given in Table 1.
Some of the datasets have been used in training phase,
and the rest are reserved for testing the accuracy of the
developed decision-making scheme.

Hexacopter

The self-designed Hexacopter shown in Fig. 3 is the pri-
mary source of the flight data. The aircraft’s total weight,

Table 1: Summary of data from the Parrot minidrone

Number of datasets of
Healthy  10% rotor fault 20% rotor fault
3%+13 3%45 8
Sampling frequency= 200 Hz, Length of data=15s
* denotes training data

including the battery, is approximately 8.65 kg. The Hex-
acopter is constructed with the Tarot 680 Pro frame with
a diameter of 695 mm, powered by MN3110 470KV mo-
tor from T-Motor with a 300 mm diameter propeller. The
power of the Hexacopter is supplied by a 10,000 mAh 6S
battery with a 30C discharge rate, enabling the aircraft to
hover at around 40 percent throttle. The Hexacopter dy-
namics are controlled by a Cube Orange Pixhawk flight
controller with Ardupilot firmware. The Hexacopter has
three IMUs onboard, two from the flight controller and
one from the Here3 Global Positioning System (GPS);
combined, they provide three sets of IMU data on all
6 degrees of freedom, measuring the linear acceleration
and angular acceleration, respectively. The integrated
flight controller log collects data on all signals, such as
the radio controller input and Electronic Speed Controller
(ESC) output.

A clockwise rotating faulty propeller shown in Fig. 4 is
used to simulate a thrust degradation due to structural
failure. The faulty propeller has a symmetrical surface
area lost at the tip, a 16.67% decrease in propeller diame-
ter. The faulty propeller was mounted at motor position 3,
1, and 6 as shown in Fig. 5 to simulate the front, side, and
back rotor fault. Data were collected with aircraft hov-
ering at a steady-state outdoor in an uncontrolled envi-
ronment, the aircraft is subjected to unpredictable exter-
nal force due to wind in all directions. The position and
altitude of hover are varied randomly in between steady
flights to capture maximum experimental variability in
the data. During the data collection phase of each flight,



Figure 3: Hexacopter with considered rotor faults

the aircraft was hovering under Loiter mode. Under Loi-
ter mode, the flight controller passes the internal IMU
data and GPS data through the Extended Kalman Filter
(EKF) to generate an estimated relative altitude and po-
sition. The target altitude and position are then passed to
the control system, generating a Pulse Width Modulated
(PWM) control output to ESCs accordingly (Ref. 25).
The summary of the datasets generated from the hexa-
copter is given in Table 2.

Figure 4: Healthy and faulty propeller

Table 2: Summary of data from hexacopter

Health state Number of datasets
Healthy 2%4+1]

Front rotor fault 10*+5

Side rotor fault 10*+5

Back rotor fault 10*+5

Sampling frequency= 10 Hz, Length of data =60 s
* denotes training data
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Figure 5: Hexacopter X-configuration
METHODOLOGY

General Workframe of Rotor Fault Detection and
Identification

Let Z, be signals that designate the aircraft under con-
sideration in its healthy state, and Z;,Z, and Zg the air-
craft under fault of Rotor 1,2, and 6. Z, designates the
unknown (to be determined) state of the aircraft. Statis-
tical learning methods explored in this study are based
on discretized aircraft states signals y[t] ! and control sig-
nals uft] (fort =1,2,...,N). Here, N denotes the number
of samples, and the conversion from discrete normalized
time to analog time is based on (r — 1)T;, with T; being
the sampling period. The signals are represented by Z and
subscript (0, 1,2,6,u) is used to denote the corresponding
state of the aircraft that produced the signals.

The signals generated from simulation can be analyzed
by parametric or non-parametric statistical methods and
proper models are fitted and validated. Such models are
trained for the cases Z,,Z;,Z>,Z¢ in the baseline phase.
Fault detection and identification is performed in the on-
line inspection phase with the information extracted from
the current unknown signals with the baseline models, de-

! A functional argument in parentheses designates function of a real
variable; for instance x(¢) is a function of analog time t € R. A func-
tional argument in brackets designates function of an integer variable;
for instance x(¢] is a function of normalized discrete time ( = 1,2,...).



signing decision-making scheme based on statistical hy-
pothesis testing or machine learning (ML) based classifi-
cation algorithm.

However, in the presence of transient disturbances such
as gusts, which are commonly encountered during flight
causes increased false alarms with statistical decision-
making (Ref. 20). To this end, an innovative approach
was developed by the authors to utilize ML based classifi-
cation algorithm along with the statistical time-series rep-
resentation of the dynamics of the signals obtained from
a hexacopter. This method, titled as the time-series neu-
ral network (TSNN) is described in Refs. 23,24, Neural
Networks are excellent classifiers, able to accommodate
noise and uncertainty in data with carefully chosen fea-
tures and regularization parameters making it attractive
for our application, where the aim is to develop a ro-
bust rotor FDI framework with signals affected by atmo-
spheric disturbances encountered in real flight. But often
these ML techniques focus on fitting the data and suffer
from a lack of explainability. Therefore, the focus was to
develop interpretable features that extract important dy-
namic information from the aircraft signals, to be input
to a single hidden layer NN that only serves as a single-
step classifier tool. these features are extracted with the
help of a statistical time-series model since it can repre-
sent the dynamics of the system. This study validates the
developed framework, as shown in Fig. 6 with data gen-
erated from flight experiments on 2 types of multicopters,
namely, a quadcopter and a hexacopter.

Vector ARX Model Identification for Healthy Aircraft

Vector AutoRegressive (VARX) models employ multi-
dimensional signals, i.e. m-dimensional aircraft atti-
tudes as the response and n-dimensional control sig-
nals as excitation, for input-output time series model-
ing (Refs. 26,27) given by:
na nb
Y=Y Ai-ylt—il+ Y B ult —i—nk] +e[f]
i=1 i=0
with e[f] ~iid A4(0, %), X =E{e[r]-e’[1]}
ey

with A; (m x m) designating the i-th AR matrix, B; (m x
n) designating the i-th X matrix, e[t] (m x 1) the model
residual sequence characterized by the non-singular and
generally non-diagonal covariance matrix X/, na the AR
order, nb the X order, nk the delay in terms of lag be-
tween response and input signals and E{-} statistical ex-
pectation. Given the attitude signal measurements y|t]
(t=1,2,...,N), the estimation of the VARX parameter
vector 6 comprising all AR and X matrix elements (6 =
vec([A1 Az...An; By Bj...B,]) and the residual
covariance matrix X' is accomplished via linear regres-
sion schemes based on minimization of the Ordinary

Least Squares (OLS) or the Weighted Least Squares
(WLS) criterion (Refs. 28,29). The modeling procedure
involves the successive fitting of VARX (na,nb, nk) mod-
els while sweeping through increasing AR and X orders,
na and nb respectively and delay, nk, until an adequate
model is achieved. The model order is chosen by min-
imum Bayesian Information Criteria (BIC) and Resid-
ual sum of Squares over Signal Sum of Squares Crite-
rion (RSS/SSS) criteria (Ref. 30) given by the following

equations:
BIC =1In (trace(X)) + (d x InN) /N (2)
m Z 2
RSS/SSS = ! v t=0,1,...,N Q)
/ ,; Yyilt]?

where, d denotes the number of free parameters estimated
for the VARX model and N denotes the number of sam-
ples used for estimation. BIC is a statistical criterion that
penalizes model complexity (order, and hence the num-
ber of free parameters) as a counteraction to a decreasing
model fit criterion. RSS/SSS criteria determines the pre-
dictive capability of the model.

Time-Series Assisted Neural Network

The VARX model for healthy aircraft is used to filter the
aircraft signals (response and controls) and obtain output
residuals. Important information about the dynamics of
the aircraft is embedded in the output residuals and con-
troller commands due to the incorporation of a feedback
controller. To this effect, crosscorrelation between the
output residuals and inputs have been identified as a pow-
erful feature to distinguish between different rotor faults
and gust affected healthy flight.

The crosscorrelation function between two signals z(7)
and x(r), denoted by ¥;[7] is given by Eq. 4.

Yoel 7] = E{2[t] - [t + 7]} )
where 7 is the time lag in number of samples.

The crosscorrelation function is fed to the input layer of a
2-layer NN to classify 4 classes: healthy flight and front,
side, and back rotor faults.

The input layer is denoted by x” and the output layer is
denoted by h(x) and is related by the following equation:

h(x) =6 (WZT <G(W1Tx) +B1) +B2> (5)

where, 0(s) indicates the hyperbolic tangent activation

e —e’
function given by 6(s) =

- -. The weight ma-
. . et
trices and bias vectors for the two layers denoted by
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Figure 6: General workframe of time-series neural networks

W1, W; and By, B; are determined in the baseline train-
ing phase by backpropagation learning techniques to
minimize classification error.

RESULTS FOR QUADCOPTER

Signals

The minidrone was flown repeatedly in outdoor and in-
door conditions under hover for over 8 days to capture
experimental variability in flight. Figures 7a and 7b show
the time history of the IMU and controller command
signals collected from a Parrot Mambo minidrone com-
manded to hover at a height of 1.1 m off the ground. In
the data sets collected, a front rotor fault occurs at t = 20
s, indicated by the vertical black dashed line. Fig. 7a
represent 10 and Fig. 7b represent 20% rotor fault. The
aircraft takes about 3 seconds to take off before settling
onto a steady hover, evident from the angular rates sig-
nals. Therefore, the steady-state signals from 5-10 s have
been used as healthy signals. Immediately after the ro-
tor fault commencement, the signals show a transient re-
sponse due to the sudden loss in thrust in the faulty ro-
tor, as observed from the marked change of variance of
the angular rate signals. The controller compensates for
the fault by increasing the commanded rotor speed to the
faulty rotor and the flight achieves a steady-state within
10 s. In the following analysis, the rotor degradation sig-
nals are considered as the fault-compensated steady-state
signals from 30-45 s, shown in Figs. 7a and 7b. It can be
observed from the bottom plots that the faulty rotor speed
is quickly compensated for and the mean of the speed out-
puts are similar in healthy and faulty rotor states. To this
end, this method relies on capturing the input-output dy-
namics of the system, properly represented by statistical
time-series models.

Model identification and neural network training

Vector (multi-variate) parametric identification of the air-
craft dynamics has been based on 15 s (N = 3000 sam-
ples at a sampling frequency of 200 Hz) of aircraft an-
gular rates and control signals obtained from healthy air-
craft flight under hover. In the present case, the response
comprises the roll, pitch, and yaw rates and the excitation
are the 4 independent rotor speeds. The model parame-
ters and model order, A;,B; and na,nb,nk, respectively
(Eq. 1), need to be estimated so that the model prop-
erly represents the dynamics of the system under healthy
conditions. The modeling strategy consists of successive
fitting of VAR (na,nb,nk) models until a suitable model
with the least amount of complexity (number of parame-
ters) and best fit is selected, as shown in Fig. 8a.

Model order selection is based on a combination of
Bayesian Information Criteria (BIC) (Eq. 2) and Resid-
ual sum of squares normalized by Signal sum of squares
(RSS/SSS) criteria (Eq. 3). A model order of na =
12,nb = 12,nk = 0 yields the minimum BIC and this
model is represented as VARX(12,12,0). This order ex-
hibits a very low RSS/SSS value of 0.14% demonstrating
accurate identification and excellent dynamics represen-
tation of the healthy aircraft under hover. The number
of parameters estimated for the VARX(12,12,0) model
is 252, which results in a Samples per Parameter (SPP)
ratio of 83.33 (%), and the suggested value is more than
15 (Ref. 31).

The model was validated based on the fact that the model
matching the current state of the system should generate
output residual sequences which are uncorrelated. Con-
sequently, using a healthy aircraft signal that has been
generated from a different flight experiment, it has been
seen that the crosscorrelation function of the output resid-
ual sequences obtained from the healthy model has been
observed to be more or less white with 95% confidence,
as shown Fig. 8b (confidence intervals shown in blue).

From Ref. 23, it has been observed that crosscorrela-
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Figure 7: Time history of IMU and rotor command signals from Parrot Minidrone under hover. The vertical black
dashed line indicates the instant of rotor fault commencement.

tion of output residuals, obtained via a statistical model
of a healthy aircraft, has better capability to detect and
identify rotor failures using simple NN than signals only.
Crosscorrelation function serves as a “good” feature for
fault classification. To this end, output residuals and in-
put signals (controller commands) have been obtained
from filtering the different healthy and faulty signals of
1 s length through the healthy aircraft model. Next, the
crosscorrelation of these with each other up to a posi-
tive lag of 20 is fed through the first layer of the NN.
The first classification consists of healthy signals. The
rotor fault class has been trained with only signals with
10% degradation. Therefore, this network, having output
classes as healthy aircraft and faulty, can only detect rotor
faults. Note that the number of training data sets (See Ta-
ble 1) should be balanced for the different classes to avoid
classifier bias. The details of this TSNN are given in Ta-
ble 3. Note that the training method has been used as the
Bayesian regularization because of the limited number of
datasets available.

Rotor Fault Detection and Identification results

Aircraft attitude rates and rotor speeds signals obtained
from the current flight of minidrone, with window length
1 s updated every 1 s, are filtered through the identified
healthy time series model, followed by the crosscorre-
lation between inputs and output residuals being driven
through the trained network. Indicative fault monitoring
results are shown in Fig. 9. The top plot shows healthy
flight and the bottom plot shows fault-compensated flight
with 20% rotor fault. Note that these datasets have not
been used in the training phase. The markers 0’ and *+’

Table 3: Time-Series assisted neural network training for
the Parrot minidrone

Input Crosscorrelation between

Type output residuals and
input signals (1 s)

Input Layer Size 1029

Training Bayesian regularization

Function backpropagation

Hidden Layer Size 8

Output 2 (Healthy and

rotor faults)

Cost Function
Activation Function
Performance

Mean-squared error
Hyperbolic Tangent Function
433x10°°

Table 4: Fault detection results for time-series assisted
neural network on the Parrot minidrone

False Alarms Missed faults
9.63 0
All the metrics are given in percentages

denotes healthy and faulty flight respectively. The deci-
sion is mostly accurate, with one false alarm during the
healthy flight.

The summary results for fault detection calculated from
the test data given in Table | are given in Table 4. It
shows a total accuracy of 96%, with some false alarms
but no missed faults. Note that the metrics are shown in
percentages, as multiple decisions are made throughout
the flight time in a single data set. Since only a single
type of rotor fault with varying severity is considered in
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this case, there is no data for calculating a fault confusion
matrix.

RESULTS FOR HEXACOPTER

Signals

The lab-built hexacopter flight experiments were con-
ducted outdoors only over 6 days under varying levels
of windy weather. Figures 10 and 11 show the indica-
tive flight signals obtained under healthy and front ro-
tor faults, respectively. The top subplots show the esti-
mated values of the roll, pitch, and yaw attitudes, and
the bottom plots the estimated individual rotor speeds, re-

spectively. Note that the output signals have been mean-
compensated due to the difference in yaw command in
different flights. All the signals are stochastic in nature
due to both the atmospheric disturbances, as well as the
sensor noise. The roll and pitch should have a statisti-
cal mean zero, since a hover is commanded. It can be
observed that the variances of the signals in front rotor
faults are higher than that in healthy flight. However, that
can be contributed to the change in weather conditions
under which the flight tests were conducted. The power
spectral density of the output signals show little differ-
ence in the dynamic content, due to the fact that the loss
of rotor thrust due to fault was compensated by increas-
ing the rotor speeds. Therefore, the relationship between
the rotor speeds along with the attitudes needs to be cap-
tured to determine the rotor faults. Indicative signals for
side and back rotor fault has been shown in the Appendix,
Figs. 16 and 17, respectively.

Model identification and neural network training

Vector (multi-variate) parametric identification of the air-
craft dynamics has been based on 15 s (N = 600 sam-
ples at a sampling frequency of 10 Hz) of aircraft atti-
tudes and individual rotor speeds obtained from healthy
hexacopter flight under hover. In the present case, the
response consists of the roll, pitch, and yaw rates and
the input signals are the 6 independent rotor speeds. The
model parameters and model order, A;, B; and na,nb, nk,
respectively (Eq. 1), are estimated so that the model prop-
erly represents the dynamics of the system under healthy
conditions. Similar to the exercise with minidrone, the
VAR (na,nb,nk) model is estimated by the weighted least
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Figure 12: Time history of attitudes and rotor speeds from the hexacopter under steady hover
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Figure 13: Model selection for healthy flight of the hexa-
copter

squares approach, and the model order is selected by
Bayesian Information Criteria (BIC) (Eq. 2) and the
Residual sum of squares normalized by Signal sum of
squares (RSS/SSS) criteria (Eq. 3), as shown in Fig. 13.
A model order of na = 2,nb = 2,nk = 0 yields the min-
imum BIC. However, the model order is chosen as na =
2,nb =2,nk =0, by examining the whiteness of the resid-
uals as shown in Fig. 14a and this model is represented
as VARX(3,3,0). This order exhibits an RSS/SSS value
of 2.08% which is sufficient given that there were gusts
affecting the flight under hover. The number of parame-
ters estimated for the VARX(3,3,0) model is 81, which
results in a Samples per Parameter (SPP) ratio of 66.66

%)

The model was validated based on the fact that the model
matching the current state of the system should gener-
ate output residual sequences which are uncorrelated with
each other as well as the input signals. Consequently, a
healthy aircraft signal has been generated from a different
flight experiment. The crosscorrelation function of the
output residual sequences obtained from driving the cur-
rent signals from a healthy aircraft through the healthy
model has been observed to be white with 95% confi-
dence, as shown Fig. 14a (confidence intervals shown
in blue). Next, the crosscorrelation function of residu-
als obtained from driving the degraded front rotor flight
signals through the identified healthy model has been pre-
sented in Fig. 14b. It shows that the residual sequences
are correlated as they exceed the confidence limits for
most of the lags. This denotes that the input-output re-
lationship represented by the healthy model changes due
to a rotor fault. This information has been crucial for de-
signing ML based classifiers to detect and identify rotor
faults (Ref. 23).

Similarly, for fault detection and identification in the hex-
acopter, a TSNN is trained with the crosscorrelation of
output residuals and input signals (controller commands)
obtained from filtering the different healthy and faulty
signals of 10s length through the healthy aircraft model.
The crosscorrelations are considered up to a positive of
5 and serve as the first layer of the TSNN. The output
classes of this network are healthy flight, front rotor fault,
back rotor fault, and side rotor fault, trained with 10 sets
of training datasets each, as per Table 2. The other de-
tails of training this network are given in Table 5. Note
that the training method has been used as the Bayesian
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Figure 14: Crosscorrelations of the residuals obtained from the healthy model of the hexacopter

Table 5: Time-series assisted neural network training for
the hexacopter

Input Crosscorrelation between
Type output residuals and
input signals (10 s)
Input Layer Size 486
Training Bayesian regularization
Function backpropagation
Hidden Layer Size 2
Output 4 (Healthy and
classes front, side, and back rotor faults)

Cost Function Mean-squared error

Activation Function = Hyperbolic Tangent Function

Performance 931x10°10

regularization as it negates the need for a validation data
set.

Rotor Fault Detection and Identification results

Aircraft attitudes and individual rotor speeds signals ob-
tained from the current flight of the hexacopter, with win-
dow length 10 s updated every 1 s, are driven through the
identified healthy time series model. The crosscorrela-
tion between inputs and output residuals is fed through
the trained network, which performs fault detection and
identification simultaneously. Indicative fault monitoring
results are shown in Fig. 15. The title of the figure de-
notes the health condition under which the signals being
monitored are obtained. These signals are test signals de-
noted in Table. 2, and are not used in the training phase.
The markers ’+’, **’, ’0’, and ’x’ denotes healthy, front

10

rotor fault, side rotor fault, and back rotor fault decisions,
respectively. The decisions shown in these indicative sig-
nals in Fig. 15 are mostly accurate.

Table 6: Fault detection and identification results with
time-series assisted neural network for the hexacopter

(a) Fault detection

Missed faults for faults of
Front rotor  Side rotor  Back rotor
0 0 0

False Alarms
for Healthy flight
6.87

(b) Fault classification confusion matrix

Decision Signals for
Front rotor  Side rotor ~ Back rotor
Front rotor 100 0 0
Side rotor 0 91.11 8.89
Back rotor 0 2.75 97.25

All the metrics are given in percentages

The summary results for fault detection and identification
calculated from the test data given in Table 2 are given in
Tables 6a and 6b, respectively. Table 6a shows a fault
detection accuracy of 93%, with 7% false alarms and no
missed faults. The fault identification is mostly accurate,
with some confusion between the side and back rotor
faults. The accuracy metrics are shown as the percent-
age of the accurate decisions made throughout the flight
time. Note, in calculating false alarms, the type of fault
denoted by the wrong decision is irrelevant, hence it is
shown separately from the confusion matrices with other
faults. Due to this fact, the rows of the fault identification
confusion matrices may not add up to 100% when there
are missed faults present.
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Table 7: Fault detection and identification results with the
signal crosscorrelation neural network (ablation study)
for the hexacopter

(a) Fault detection

Missed faults for faults of
Front rotor  Side rotor  Back rotor
30.93 1.03 1.07

False Alarms
for Healthy flight
0

(b) Fault classification confusion matrix

Decision Signals for faults of

Front rotor  Side rotor ~ Back rotor
Front rotor 69.07 0 0
Side rotor 0 98.27 0.7
Back rotor 2.37 16.15 80.41

All the metrics are given in percentages

It is important to perform an ablation study here, to as-
certain the significance of the time-series model in the
data-driven decision-making scheme. In machine learn-
ing applications, an ablation study is a set of experiments
in which components of a machine learning system are
removed or replaced in order to measure the impact of
these components on the performance of the system. This
helps justify the inclusion of the important components
or removal of certain components that do not improve the
performance to reduce the complexity. Therefore in this
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application, a NN has been trained with the signal cross-
correlations only, eliminating the time-series representa-
tion of the healthy dynamics. The size of the input layer,
i.e. the number of lags considered in the crosscorrela-
tion and the hidden layer size has been kept the same as
the TSNN described in Table 5. Also, the same train-
ing and test data have been considered to evaluate and
contrast the performance of the two schemes. The sum-
mary results for the study is given in Tables 7a and 7b. It
has shown an overall accuracy of 79.64%, which is much
lower than that obtained with the TSNN. There are more
false alarms, especially with the front rotor fault and the
confusion between the rotor faults also increases due to
elimination of the time-series model.

CONCLUSIONS

This paper provides experimental validation for statisti-
cal time-series assisted data-driven methods to detect and
classify rotor faults in multicopters under atmospheric
disturbances and uncertainty. Development of statistical
time series models (response only and input-output) to
represent healthy aircraft dynamics has been discussed
followed by the development of machine-learning based
fault detection and identification methods assisted by in-
formation obtained from the model estimated from the
healthy aircraft. The important conclusions from the
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