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ABSTRACT

A novel machine learning approach is introduced, with the goal of minimizing the number of points required to
correct a low-fidelity model using sparse high-fidelity data. The method is applied to a low-fidelity comprehensive
trim analysis of a compound helicopter with three degrees of control redundancy: main rotor speed, auxiliary thrust,
and stabilator setting. The final low-fidelity correction model applies small changes to the power requirement and main
rotor trim control predictions to more closely match the high-fidelity data. To reduce the computational time, and labor
cost of querying the high-fidelity data, the algorithm prioritizes data acquisition by iteratively selecting the data where
the error is expected to exceed the model tolerance by the greatest margin. The model is trained until the error model
anticipates a scaled accuracy of 5% at the minimum power region at each flight speed, with no more than 20% error
across the entire trim envelope. For the low-fidelity correction model, this tolerance is met through training with data
from 89 trim states, which is a 79% reduction from the 428 trim states required to obtain comparable accuracy for
a purely data-driven machine learning approach. Evaluation on a testing data set yields a rate of 95-98% of testing

points actually falling within the error tolerance goals, compared to 80-93% for the purely data-driven model.

NOTATION

State vector

Control input vector

u,v,w Body velocities, ft/s

p,q,r Body angular velocities, rad/s
¢,6,¢ Body roll, pitch and yaw attitude, deg
x,y,z Inertial positions, ft

Bo Rotor coning, deg

Bis Lateral flap, rad

Bic Longitudinal flap, rad

Ba Differential flapping, rad

Q Main rotor rotational speed, rad/s
Teoll Auxiliary Thrust

Ostap  Stabilator Angle

0o Collective control, deg

O1c Lateral Cyclic, deg

015 Longitudinal Cyclic, deg

01 Aileron deflection, deg
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Orudader Rudder deflection, deg

P Total vehicle power, hp

f Low-fidelity model

g High-fidelity model

h Error function

h Predicted error function

Y High-fidelity predictions

Y Low-fidelity predictions

€ Error tolerance

d Normalized distance

nda Desired accuracy as a function of d

w Regression coefficients

In Slack parameter for support vector regression
b Bias term for support vector regression
a Lagrangian multipliers

INTRODUCTION

With the emergence of eVTOL, mid-scale UAS, and com-
pound rotorcraft at the FVL scale, the scientific community
is widening its scope beyond the established knowledge base



of large scale conventional helicopters. In the case of eV-
TOL and UAS, basic research is still being done to identify
and understand the dominant physical behaviors such as in-
teractional aerodynamics, handling qualities, and scaling ef-
fects (Refs. |-5). Compound rotorcraft introduce the problem
of overactuated control by adding some combination of coax-
ial rotors, auxiliary propulsion, and control surfaces. This in-
creases the ability for a human or autonomous pilot to achieve
targeted behaviors, such as minimum power, reduced vibra-
tion or noise, or increased maneuverability (Refs. 6—12). The
ability for an aircraft designer to derive an optimal design, or
for a control system to minimize a target attribute, is limited
by the understanding of the vehicle physics and the capacity
for their models to predict the design space and control behav-
ior.

In design optimization, multi-fidelity optimization is used ex-
tensively for its ability to scale model fidelity as necessary.
It uses a rapidly evaluated low order model to close in on the
approximate area of a globally optimum design, and a compu-
tationally expensive more accurate model to refine the design
parameters (Refs. 13-22). These algorithms work by identi-
fying the area of importance and ignoring the rest of the deci-
sion space. Their benefits are limited in cases where the time
and monetary cost of obtaining reliable high-fidelity data is
excessive, which can be the case for manufacturing and flight
testing of a rotorcraft, or when high-fidelity models such as
CFD have not been confidently validated.

In the case of control of an overactuated rotorcraft, sub-
optimal regions of the flight envelope cannot be neglected.
Validation and verification of autonomous pilots is a major
focus of the Al scientific community, and depends on reliable
behaviour across the flight envelope. A good autonomous pi-
lot must maintain a minimum level of confidence across the
entire flight envelope, but it benefits most from improved ac-
curacy near minimum power, minimum noise, maximum ma-
neuverability, and similarly desirable flight states.

The goal of this paper is to explore the ability for a low order
model to be corrected by a targeted set of high-fidelity data at
specific areas of interest. The high-fidelity data used to cor-
rect the low fidelity model will be selected based on modeling
error, and will be as sparse as possible to minimize the cost
of data collection. The final corrected model will have a min-
imum guaranteed level of accuracy across the entire decision
space with targeted improvement in model accuracy at regions
deemed important by the designer. This allows the model to
be used to make rapid decisions with a known, consistent level
of confidence in the results.

MODELING AND ANALYSIS

The aircraft used in the study is a lift and thrust compounded
derivative of the UH-60 Black Hawk so as to operate at higher
speeds (up to 250 kts). As shown in Figure 1, a fixed wing is
added to the baseline helicopter for lift compounding. Pro-
pellers placed 10 ft laterally on either wings are used to pro-
vide auxiliary thrust in high-speed flight. The forward shaft
tilt present in the UH-60 is removed since the auxiliary thrust

is provided by the propellers. For better performance at high
speeds, the high, nonlinear blade twist of the baseline UH-
60A is reduced to an 8° linear twist rate. This reduces the
associated high loads in high-speed forward flight due to neg-
ative lift and large drag on the advancing blade tips. The gross
weight is raised to 20,110 Ibs based on the maximum gross
weight of the X-49A Speed Hawk, which is a reasonable ap-
proximation for the compound aircraft with wings, auxiliary
propulsion, and additional structural weight. The forces and
moments of the wing are found using Prandtl’s lifting line the-
ory. Key properties of the aircraft used in the simulation are
provided in Table 1.

Figure 1: Compound Helicopter Schematic

For trim of a conventional helicopter, an equilibrium for the
six rigid body degrees of freedom are uniquely determined by
appropriately setting six trim variables: collective pitch (875),
lateral cyclic pitch (6;.), longitudinal cyclic pitch (615), tail
rotor pitch (6;,), vehicle pitch (@), and vehicle roll attitude
(¢). For compound helicopter designs, a number of additional
controls can be expected to be made available. This control re-
dundancy allows an infinite number of potential steady-state
trimmed flight conditions over which the controls can be opti-
mized to achieve a target, such as low power. For the present
study, three additional controls are considered: main rotor
speed (Q), auxiliary thrust (T,,;), and stabilator angle (6574p)
Additionally, differential propeller thrust is used to replace the
conventional tail rotor.

Consistent modeling approaches between both models in-
clude the following considerations. Interference effects be-
tween the wing, rotor, and fuselage are not modeled in this
study. The propeller thrust is modeled as a point force (paral-
lel to the waterline of the aircraft) and a yaw moment (parallel
to the rotor torque vector), which are applied in line with the
vertical coordinate of the center of gravity, and at the quarter-
chord of the wings longitudinally. This is done so that the
collective propeller thrust acts only in the longitudinal body
direction without producing a coupled pitching moment. The
magnitude of the thrust and the yaw moment are directly pre-
scribed as controls.

The goal of this study is to evaluate the ability of machine
learning techniques to correct error in a low-fidelity model,
based on limited data from a high-fidelity model. As such,



Table 1: Compound helicopter configuration details

Parameter Value
Gross Weight 20,110 lbs
C.G. Location 1.5 ft aft, 5.8 ft below hub
Main Rotor
Rotor Radius 26.8 ft
Nominal Rotor Speed 258 RPM
Nominal Blade Twist -8°
Shaft Tilt 0°
Blade Airfoils SC-1094 R8/SC-1095
Stabilator
Effective Area 43 ft?
Airfoil NACA 0012
C.P. Location 29.9 ft aft, 5.9 ft below hub
Wing
Effective Area 220 f?
Mean Chord 5 ft
Aspect Ratio 9.0
Taper Ratio 0.825
Incidence Angle 3.8°
C.P. Location 0.5 ft aft, 6.5 ft below hub
Auxiliary Propulsor
Radius 4.5 ft
Speed 1,934 RPM
Solidity 0.12
Number of Blades 4x2
Efficiency (150 - 250 kts) 0.80-0.87
Location 10 ft laterally, on each wing

two different modeling approaches are considered. The low-
fidelity model will be represented by a MATLAB model,
which is computationally efficient and can be queried in near-
real time. The high-fidelity model will be represented by an
RCAS model of the same compound helicopter, and is a more
costly method of obtaining trim results. In future implemen-
tation of this strategy, this model can be replaced by CFD,
flight tests, or any prohibitively time- or cost-intensive data
acquisition method.

Low-Fidelity Model (Matlab)

The low-fidelity compound helicopter model for the current
study is a MATLAB dynamic simulation model developed
by Vayalali and Gandhi (Ref. [1), which is a derivative of
the UH-60A Black Hawk simulation model developed by Kr-
ishnamurthi and Gandhi (Ref. 23) Validation of the UH-60A
Black Hawk simulation model was performed in (Ref. 23)
against a trim sweep and frequency responses of flight test
and GenHel data from (Ref. 24).

The model uses a non-linear, blade element representation for
the articulated single main rotor with aerodynamic forces de-
termined by airfoil table. The blades are rigid, with offset flap
and lag hinges. Flap and lag hinges are assumed to be coin-
cident, with the flap motion following the lag in sequence. A
3-state Pitt-Peters dynamic inflow model (Ref. 25) is used to
represent the induced velocity distribution on the rotor disk.

The propeller thrust, torque, and power is modeled using a
modified version of Goldstein’s vortex theory, combined with
blade element theory.

The governing equations of motion are given by
X
- (D
y

Where the state vector, X, is comprised of rigid body and rotor
states

X= [)_C)fuseluge, ;r()t()r] (2)
such that
ffuselage = [u,v,w,p,q,r,$,0,4,x,y,7] 3
Xrotor = [B0:Bis: BiesBas Bos Bis» Bic» Ba» A0, Ais, Aic]
4)

The control input vector for the aircraft model is given by
= [elw O1s, 907 ‘gpr()p, 6pr()p’ 04it,0rudder, 6stub]T (5)
High-Fidelity Model (RCAS)

In application, the high-fidelity data is likely to take the form
of coupled CFD-CSD or flight test data. For the sake of al-
gorithmic development and evaluation, this study will con-
sider a compound model developed in Rotorcraft Compre-
hensive Analysis System (RCAS) as a stand-in for higher-
fidelity data (Ref. 26). This study does not intend to make
any conclusions about the relative merits of the two modeling
approaches, rather the goal is to highlight the capability of a
machine learning method to correct for model differences in a
unified modelling approach.

In the RCAS model, a dual core prescribed wake model is
used to model the inflow in forward fight, which captures the
effects of producing negative lift on the advancing tip of the
blade. The structural model is represented by 13 elastic beam
elements, with 36 aerodynamic sections, and an azimuthal
resolution of 5° for calculation of airloads and structural re-
sponse. The flap and lag hinges, and pitch bearings are mod-
eled as torsional spring/damper elements, and pitch control
is prescribed through a spring element with a stiffness that
is representative of the pitch link and swashplate stiffness of
a UH-60A. Propeller power is determined in post-processing
using a blade element vortex theory (BEVT) model of two
pitch controlled four-bladed propellers, which gives power as
a function of advance ratio and propeller speed. The roll mo-
ment that would be produced by differential torque is consid-
ered negligible.

In summary, there are two primary differences between the
MATLAB modeling approach and the RCAS approach. First,
instead of rigid blade analysis with a flap degree of freedom,
the RCAS model uses elastic blade modeling, with sectional
blade stiffness properties that are representative of the UH-
60A. Second, the rotor inflow is calculated using a prescribed
wake vortex model.



Model Correction Algorithm

This section describes the role of the model correction algo-
rithm, as well as the process for data acquisition used in the
generation of results in the following sections. Figure 2 pro-
vides an illustrative example of the correction algorithm for a
case where x is one dimensional and the output getting cor-
rected is power prediction.
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(\ weighted tolerance: =P, ;0 /__-"
21700 |
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Figure 2: Illustrative example of model correction

The primary assumption of this study is that there is a low-
fidelity model (f) that predicts a quantity (¥), and can be
queried at effectively no time or cost. The predicted value
of ¥ has an unknown associated error, E.

f(x,u)=Y (6)
Y=Y+E (7)

There is also a high-fidelity model (g) which is assumed to
have negligible error, but is very expensive and should be
queried as little as possible.

glx,u) =Y ®)

Each model provides a prediction of the power and controls
required to trim based on the flight state (x) and the compound
control settings («). If it is assumed that the error (E) is en-
tirely due to modeling error, then there is a function (h) which
describes (E) and is dependent only on observable quantities.

h(x,u)=E 9)

If known, this function can be used to correct the low-fidelity
model and provide accurate predictions of ¥ without the cost
and expense of g.

f(x,u)—h(x,u) =Y (10)
Since h is unknown, machine learning techniques will be em-
ployed to estimate it based on a limited set of data from query-
ing the high fidelity model, g. For this study, three techniques

are used to determine the estimate fl, artificial neural networks
(ANN), Gaussian regression models, and support vector ma-
chines (SVM).

To start the algorithm, it is assumed that a small initial set
of high-fidelity data exists. This data could be random, or
could be driven by parametric interrogation of the low-fidelity
model. A proposed heuristic is to start with a single data point
at the most desirable state (i.e. minimum power), and the
remaining points evenly distributed through the control and
state spaces. Through one of the three machine learning ap-
proaches, the initial learned model, ﬁo, is trained using this set
of data.

In many machine learning applications data is abundant, and
a naive approach to data acquisition such as randomly select-
ing and adding data would eventually provide the required
quantity of data such that h ~ h. Some machine learning ap-
proaches, such as reinforcement learning, bias the data col-
lection towards combinations of predictors that provide the
desired behavior. The goal of the current study is to use as
little training data as possible to provide high accuracy near
desired behavior, while simultaneously guaranteeing a known
level of accuracy over the entire range. This can be expressed
as:

f(x,u) —h(x,u)+e=Y (11

where € < ng4 - R.

The function n4 governs the relaxation in tolerance at states
further from the region of interest and can take any form. An
exponential growth function is used here, which outputs al-
lowable error as a fraction of variable R and is bounded by
Nmin a0d Dmax. Mmin 18 the maximum tolerance allowed in the
minimum power region and 17,,,, is the maximum allowable
error for all possible states, and d is the normalized distance
magnitude from the states that produce Prnin-

=1 12
¢ = e_ln(nmax/nmin,)'ldlz (13)
d=lu-ug,, | (14)

The variable R is the normalizing parameter, which depends
on the output being corrected. For a quantity that would have
an ideal minimum, such as power, R = ?X‘;"n In this case the
tolerance is defined as a percentage of the expected optimal
power requirement for each velocity based on the low-fidelity
model predictions. This value varies with velocity to ensure
adequate scaling of tolerance over the entire velocity envelope
as quantities like power vary significantly. For quantities that
exist over a fixed range, such as pilot controls, the value of R
is considered to be the maximum range of the corresponding
control.

For the current study, the quantity of interest is power, 1,5, 18
0.05 and 77,45 is 0.20. Therefore all error must be less than



5% at the minimum power state, less than 20% over the en-
tire space, and the tolerance equation reduces to the following
equation.

Na=0.05-¢" 4P (15)

Training Algorithm

When the initial set of data doesn’t produce sufficiently accu-
rate corrections, the model can be improved by selecting new
data to evaluate and retrain the correction model. If the model
uses known error to select subsequent data to add, it can ef-
fectively minimize the size of the dataset needed to ensure a
threshold accuracy. The following algorithm will be used to
iteratively select additional data from g to add to the training
data. Figure 3 provides a flowchart summary of the training
and data selection algorithm.

1. For the n'" iteration, ﬁn is trained from all available train-
ing data.

2. The error between the known data and corrected low-
fidelity model prediction at that point are weighted.

€y (x,u)=¢- (f(x,u) +ﬁn(x,u) —g(x,u))

where ¢ is the radial basis function used in Equation 14.

(16)

3. The point in the state and control space with the largest
weighted error is found.

[x, u]ns1 > max (e ([x,u]o:n)) 17

4. The new data point [x,u],4; is evaluated using the high-
fidelity model, g.

5. If the error between the new data point and the corrected
model prediction is not within the threshold defined by
Equation 12, the new data point and g([x,u],+1) evalua-
tion are added to the training data. The preceding steps
are then repeated until the points meet the desired toler-
ance 14

6. Once the new data point and prediction using the cor-
rected model meet the tolerance criteria, there is another
check that is made before the algorithm quits. A point in
the space which is farthest from all the points in the train-
ing dataset is selected and evaluated using the trained
model. If the error is within the tolerance for the se-
lected point, the algorithm quits, else the new data point
is added to the training dataset and the process is re-
peated.

Because each new data point is assumed to be at the point
of maximum expected error, this point is likely to represent
the greatest weighted error. Therefore if it is within the toler-
ance, it is likely (but not guaranteed) that the error is within
the threshold for all [x,u]. If a greater level of confidence
is desired, a bias term can be added to Equation 12 for more
strict quitting criteria at the cost of more evaluations of g.
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Figure 3: Algorithm Flowchart

Machine Learning Models

This study explores three learning techniques to evaluate their
performance when working with sparse datasets. The formu-
lation and hyper-parameters of each are described in the fol-
lowing section.

Artificial Neural Networks: Artificial neural networks are
a popular choice for machine learning applications because
of their ability to model any arbitrary function, as proven by
the universal approximation theorem. In rotorcraft applica-
tion, regressor neural networks have been used in health and
usage monitoring applications, prediction of rotor loads, and
autonomous shipboard landings (Refs. 27-29). The nature of
current problem involves modeling continuous variables using
a regressor neural network.

For the purposes of regression, the artificial neural networks
use numerically stable neuron activation functions such as a
continuously differentiable sigmoid function to represent the



decision made by each neuron. A hyperbolic-tangent sigmoid
activation function is used for the study presented in this pa-
per.

Back-propagation learning algorithm is the most common
approach to tune the weight and bias of a neural network.
Levenberg-Marquardt back propagation is chosen for back-
propagation training and is implemented using MATLAB
Statistics and Machine Learning toolbox.

The artificial neural network used in the present study consist
of a single hidden layer of neurons, with each neuron con-
nected to every input node, and every output node, as shown
in Figure 4. The input node consists of the redundant controls
(Q,T¢011,051ap)- These inputs are scaled to a range of [-1, 1]
before training. The output layer gives the estimated correc-
tion as a linear combination of the weighted hidden outputs
and bias. The hidden layer size is set to 7 neurons, which
minimizes RMSE for the results given in the following sec-
tion at 150 kts. Figure 5 shows the variation in RMSE with
hidden layer size using 1-fold cross validation.

Inputs Outputs

Hidden layer

Figure 4: Neural Network Architecture
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Figure 5: 1-fold cross validation showing variation in neural
network power correction modeling error (hp) with increased
hidden layer size

Gaussian Regression Models: Gaussian regression models
are kernel based linear regression formulations that have the
ability to model non-linear relationships between observations
and inputs. A Gaussian process is fully defined by its mean
function and covariance function (kernel). Given a training
data set O with n input-output pairs { x; € R?,y; € R,i =
1,2,3...n}, a Gaussian regression model can be formulated
as follows (Ref. 30)

y=px)+e (18)
The mean function, m(x) describes the mean of any given data
point x, and the kernel k (x,x”) describes the relationship be-
tween any given two data points. As opposed to a traditional
regression model, in Gaussian process regression, Gaussian
process is placed over p(x), and an independent, identically
distributed (iid), zero mean prior with variance o2 is placed
on the noise term e

p(x) =GP(m(x),k(x,x")),  eiidN(o,07)  (19)
For the present study, m(x) is set to zero, and the squared

exponential kernel function is used for p

1
— NT A-1 ,
k(x,x") = age_(z ()T AT ) (20)
where 0'3 is the outputs variance, and A is a diagonal matrix
of the characteristic length scales of each dimension (D) i.e
each covariate in the input dataset. Gaussian regression opti-
mizes the hyperparameters (6 = 02, A, %) via Type II Maxi-
mum Likelihood. For the present method, the marginal likeli-
hood of the training observations is maximized with respect to
the hyperparameters, and its negative log is minimized instead
as follows:

0 = argmin—logp(y|X,6)
0

~logp(y|X,0) = —logN (y]0,Kx +07)
-1 1
= —y (Kxx+00) 'y = sloglkx + 0| -
2 2
glogZH
(21)

The predictive distribution over the prediction y can be de-
fined using properties of multivariate Gaussian distributions
(Ref. 30).

Support Vector Regression: Support vector regression is a
supervised learning algorithm that is used to predict discrete
values. The basic idea behind the support vector regression
is to find the best fit line. In support vector regression, the
best fit line is the hyperplane that has the maximum number
of points. The problem of support vector regression is to find



a function that approximates mapping from an input domain
to real numbers on the basis of a training samples.

Consider the set of training data where x,, is a multivariate set
of n observations with observed response values y,,, the SVM
algorithm is given by

L 1 7
minimize —w"w
b,w 2 (22)

subject to : y,,(wa,,+b) > Ifor n=1,2,..n

where w refers to the regression coefficients.

Since the regression line should not pass through all the data
points so as to avoid overfitting and improve generalization
characteristics, a slack variable ¢ is added to the above equa-
tion.

N
L 7
minimize =w w+CZ§”
b,w 2 =

yaW x,+b) > 1-¢, for

n=1,2,..n

subject to : n=1,2,..n

{20 for

(23)

This trades off the soft in sample error Zrl:lzl £, with weight

norm 1/2w” w. C plays the role of a regularization parameter.

For the present study y, is the error in power using the two
fidelity models and x,, are the inputs.

The dual form of the above equations can be constructed using
a Lagrangian function from the primal function by introducing
nonnegative multipliers @, for each observation x,,.

N
La= %wTW=;an(yn(wan+b)—l) 24)

The details of the primal and dual formulations are described
in (Refs. 31,32).

Some regression problems cannot adequately be described us-
ing a linear model. In such a case the inputs are extended to
a non-linear space using kernels. In this study, Gaussian ker-
nel is used to transform the inputs to a non-linear space be-
fore finding the regression coefficients. The Gaussian kernel
is given by

|2

K(x,x") = e V=X (25)

RESULTS AND DISCUSSION
Low-Fidelity Model Correction at 150 kts

A total of 321 feasible trim states were produced using RCAS
through parametric variations of control inputs (2, T¢.,
Ostab) at 150 kts. These points are given in Table 2, and rep-
resent high-fidelity data that can be used to evaluate the accu-
racy of, and make corrections to the low-fidelity model. Fig-
ure 6 shows a scatter plot of actual power vs predicted power

for a testing set of 288 trim states at 150 kts. The x-axis of the
plot represents the true power requirement given by the high-
fidelity model and the y-axis represents the predicted power
requirement obtained using low-fidelity model. Data coinci-
dent with the diagonal reference line represents a model which
perfectly predicts the vehicle power requirement, while data
above and below the line over-predicts and under-predicts the
power requirement, respectively. Throughout the space de-
fined by varying rotor speed, auxiliary thrust, and stabilator
angle, the low-fidelity model tends to over-predict the actual
power requirement. Near the minimum power region, the low-
order model over-predicts the high-fidelity data by 9% (126
hp). Figure 7 shows that the root means squared error (RMSE)
for the low order model is 301 hp across the trim space, indi-
cating a high expected error of about 21% of the minimum
power. This data is also provided in the first row of Table 3.

Table 2: Training/testing data generated using high-fidelity
(RCAS) model

\Y% No. of dy[ab Q Tcoll
(kts) trim states (deg) (rad/s) (Ibs)
50 790 -18-18 22-27 500 - 6000
in increments of 3 1 500
100 740 -18-18 17 -27 500- 6000
in increments of 3 1 500
150 321 -6-12 19-27 250 -3500
in increments of 3 1 250
200 102 -1.5-6 18-25 2250 - 4500
in increments of 1.5 1 250
3500
3000
<
(7]
s
g 2500 L.
s .
>
3
"; 2000
S
1500
‘ « Predictions meeting tolerance
. Eredictions not rpeeting tolerange

1500 2000 2500 3000 3500
Actual Power, High-fidelity (hp)

Figure 6: Actual vs predicted power of testing dataset, evalu-
ated using low-fidelity model at 150 kts



Table 3: RMSE of models evaluated on testing dataset at 150 kts

Power Collective  Lateral cyclic Longitudinal cyclic =~ Training set Testing set
(hp) (deg) (deg) (deg) (n pts.) violations
Low-fidelity model 301 (21%) 4.6 (42%) 0.91 (36%) 4.9 (27%)
ANN model (initial) 240 (17%) 2.3 21%) 0.55 (21%) 3.7 (20%) 15 91 (32%)
ANN model (final) 170 (12%) 1.4 (13%) 0.28 (11%) 1.8 (10%) 33 26 (9.0%)
GR model (final) 125 89%) 1.3 (12%) 0.23 (9.2%) 1.6 (9.4%) 34 25 (8.6%)
SVR model (final) 102 (7.2%) 1.1 (9.9%) 0.21 (8.2%) 1.3 (7.2%) 33 25 (8.6%)
2%tMSE low-fidelity model o5 BMSE Corrected models
=Neural Networks
=Gaussian Networks . . . . o
20 1l =Support Vector Machmer 3500 o
§15 15 ]
o 3000 +
(7]
= =
T 10 10 z
]
5 5 § 2500} o
° o O
[]
s © o)
0 0 Model based on Model based on E @
initial training dataset Final training dataset E 2000 o+ +
Figure 7: RMSE - Total Power
15001 & N O Low-fidelty (Algorithm Start)
For the iterative learning process, a subset of 15 points are L oo Aot ol
used to initialize the problem, with one point prescribed at the 1500 2000 2500 3000 3500

state which minimizes the vehicle power requirement (as pre-
dicted by the low-fidelity model), and rest of the points uni-
formly distributed in the space spanned by the three inputs.
Due to the resolution of the parametric variations produced in
RCAS, the point of minimum power and all subsequent points
requested by the model correction training algorithm are ap-
proximated with the nearest available data point that exists
within the RCAS dataset. The 15 initial training data points,
and their respective predictions using the low-fidelity model
are shown on Figure 8.

To model the error between the low-fidelity and high-fidelity
data, an initial machine learning model is constructed. Three
machine learning approaches are used for comparison, which
are described in the previous section; artificial neural network
(ANN), Gaussian regression (GR), and support vector regres-
sion (SVR). Each method is initialized with the same training
dataset, but depending on the algorithm, the methods could
result in different training data selected during the learning
process.

Consider the artificial neural network-based correction model.
Figure 8 shows the improvement in the training dataset when
the low-fidelity model is corrected using the neural network,
where the general over-prediction of the low-fidelity model is
reduced significantly. By using the same model to test on the
withheld testing data, Figure 9 provides an accurate evalua-
tion of the predictive capabilities of the initial neural network-
based corrected model. By correcting with a learning model,

Actual Power, High-fidelity (hp)

Figure 8: Actual vs predicted power for training dataset at 150
kts

expected error in power prediction on the testing dataset is re-
duced by 4% of the minimum power, as the RMSE reduces
from 301 hp to 240 hp. This trend is also tabulated in Table 3
and shown in Figure 7. Comparing Figures 6 and 9 visually
portrays the source of the lower RMSE, as there is reduction
in global over-prediction marked by a downward shift along
the y-axis.

The training algorithm then proceeds to enrich the training
dataset with trim states corresponding to the greatest weighted
error. After an additional 18 points have been selected, the
new corrected model predictions meets the distance-weighted
tolerance in Equation 15. For the neural network model, Fig-
ure § shows that these additional training data guided by the
algorithm are highly clustered around the minimum power re-
gion, when compared against the initial dataset. Figure 10
compares the actual total power against the predicted total
power for this final neural network-based model. Compared
to the RMSE of 240 hp for the model in Figure 9, the model
in Figure 10 has an RMSE of 170 hp, with greater error where
the actual power exceeds 2000 hp. This improvement is most
easily identified in the data at power requirements of less than
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Figure 10: Actual vs predicted power of testing dataset, eval-
uated using final ANN-based correction model at 150 kts

1500 hp, where compared to the under-predictions in Fig-
ure 9, Figure 10 exhibits greater accuracy. Based on these
results, the algorithm appears to successfully select training
data which minimizes error in the minimum power region of
interest.

Figures 9, and 10 can also be used to evaluate the assertion
that the quitting criteria for the model is sufficient. Initially,
the number of trim states in the testing set which violate
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Figure 11: Actual vs predicted power of testing dataset, eval-
uated using final GR-based correction model at 150 kts
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Figure 12: Actual vs predicted power of testing dataset, eval-
uated using final SVR-based correction model at 150 kts

the weighted error tolerance function are evenly distributed
through the range of power requirements, totaling 91 states or
nearly a third of the total testing dataset (Table 3). After the
additional training has been performed, the points in violation
is reduced to 26, or 9% of the entire testing dataset. The indi-
cated points in Figure 10 shows where this unaccounted error
is occurring, mostly an over-prediction of moderate powers.
If this level of inaccuracy is insufficient for an application,



more rigorous quitting criteria can be employed at the cost of
additional data requirements.

Machine Learning Error Model Comparison at 150 kts

In order to compare the three machine learning modelling ap-
proaches, Figures 11 and 12 show the evaluation of the test-
ing datasets for the final Gaussian and support vector regres-
sion models, respectively. These Figures are directly com-
parable with Figure 10. The algorithm selects 33 points be-
fore quitting for both the neural network and support vector
regression models, while requiring 34 points for the Gaus-
sian regression model. Qualitative visual observation suggests
that while the Gaussian regression seems to perform compa-
rably to the neural network model. The support vector re-
gression model maintains a more accurate prediction at low
and moderate powers, as evidenced by the tight clustering in
line with the reference in Figure 12. As shown in Figure 7,
the RMSE of the testing dataset for the fully trained support
vector regression model is 102 hp, which is 5% lower than
either of the other two models. The superior performance of
the support vector regression model can be attributed to the
better extrapolation characteristics when dealing with small
datasets (Ref. 32). Based on these results, support vector re-
gression is picked as the choice of machine learning method
for modeling the error function for the remainder of the study.

Trim Control Prediction at 150 kts

Similar to power requirement, the model correction algorithm
can be used to correct for error in trim control setting pre-
dictions from the low-fidelity model. Figures 13, 14, and 15
show trim controls for collective control (), lateral cyclic
pitch (61.), and longitudinal cyclic pitch (6;5) respectively.
The x-axis on each plot is the normalized distance in the
control space from the set of controls that produce minimum
power. The data shown is a random subset of the larger testing
dataset, for visualization purposes. The markers for the high-
fidelity data are accompanied by error bars which denote the
tolerable range of weighted error. Initially, the low-fidelity
model tends to exceed the upper bound of collective pitch er-
ror tolerance throughout the data, while lateral and longitu-
dinal cyclic exceed the error tolerance both above and below
the limits. After correction with support vector regression, the
high-fidelity data is nearly coincident with the corrected low-
fidelity data in most of the testing data, and well within the
error tolerance.

The same set of trim states are used for training the model for
controls using each of the three machine learning techniques.
The three columns to the right of power predictions in Ta-
ble 3 show the improvement in modeling error for the three
main rotor controls. Support vector regression-based correc-
tion provides a 1-4% improvement in trim control prediction
RMSE compared to the other two learning techniques. Sim-
ilar to the power predictions, support vector regression sig-
nificantly improves the low-fidelity model, giving the lowest
modeling error.
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50 kts, 100 kts, and 200 kts Results

In this section, the same model correction training algorithm
is applied to data at other discrete speeds. Data is generated at
50 kts, 100 kts, and 200 kts through parametric variation of re-
dundant controls, as listed in Table 2. As was the case at 150
kts, one point is prescribed at the state that minimizes total
power for the low-fidelity model, and rest of the points are dis-
tributed evenly in the space spanned by three inputs. For each



Table 4: RMSE of additional discrete velocity models evaluated on testing datasets

Power Collective  Lateral cyclic Longitudinal cyclic = Training set Testing set
(hp) (deg) (deg) (deg) (n pts.) violations

50 kts
Low-fidelity 312 (29%) 6.3 (55%) 1.1 (39%) 6.1 (42%)
Corrected model 194 (18%) 0.8 (7.1%) 0.4 (14%) 0.8(5.6%) 59 29 (3.7%)
100 kts
Low-fidelity 321 (40%) 6.8 (6.0%) 1.4 (50%) 7.2 (50%)
Corrected model 132 (16%) 0.2 (1.7%) 0.2 (7%) 0.7 (4.8%) 61 31 (4.2%)
200 kts
Low-fidelity 514 (17%) 5.1 (45%) 0.9 (32%) 5.9 (41%)
Corrected model 370 (12%) 1.1 (9.7%) 0.3 (10%) 1.1 (7.6%) 26 6 (5.9%)

Table 5: RMSE of continuous velocity model evaluated on testing dataset

Velocity Power Collective  Lateral cyclic Longitudinal cyclic Training set  Testing set
(kts) (hp) (deg) (deg) (deg) (n pts.) violations
50 202 (18%) 0.8(6.9%) 0.41 (14%) 0.91 (6.3%) 40 15 (2.0%)
100 (interpolated) 340 (43%) 8.1 (79%) 3.2 (45%) 3.1 21%) 0 124 (16%)
100 (final) 121 (15%) 1.1(11%) 0.31 (10%) 0.75 (5.2%) 6 11 (0.15%)
150 110 (7.8%) 1.2(10%) 0.31 (12%) 1.1 (6.2%) 25 11 (3.7%)
200 321 (11%) 1.2(10%)  0.20 (14%) 1.3 (8.9%) 18 3 (4.8%)

of the three velocities, a discrete model is trained by follow-

ing the correction algorithm training procedure to correct the

low-fidelity predictions. Each model is evaulated against the 3000

corresponding testing data, and the resulting scatter plots of 28001

predicted vs actual power are given in Figures 16, 17, and 18. =2

Table 4 gives the summary of RMSE in power requirement @ 26001

and main rotor trim control settings for each model, as com- '%2 4001

pared to the corresponding low-fidelity model. g

For the 50 kts model, the algorithm initializes with 20 points 52200

for the first iteration of training. The training algorithm adds Ezooo o

39 points to the initial training dataset, 16 of which are within I ,'::’.

300 hp of the minimum power trim state, before it satisfies the g 1800 A

quitting criteria for all the training points for total power and £ 16001 g

controls. The RMSE of power predcitions comes down from g

312 hp to 194 hp. For the 100 kts model, the algorithm again @ 1400}

initializes with 20 points, but requires an additional 41 points ® :

to satisfy the error tolerance. Compared to the low-fidelity 12001 e - Predictions meeting tolerance

model, the corrected model is able to reduce the RMSE of 1000 © . Predictions not meeting tolerance

1000 1500 2000 2500 3000

power predictions from 321 hp to 132 hp. For the 200 kts
model, the algorithm initializes with 12 points and requires an
additional 14 points to satisfy the error tolerance. The RMSE
reduces from 514 hp to 370 hp. These results suggest that the
model correction algorithm produces consistent results across
flight regimes, with slightly improved performance at high ve-
locities.

For brevity, control predictions have been omitted, which fol-
low similar trends that can be seen in Table 4.

Continuous Velocity Modeling Results

In order to make accurate predictions across flight speeds, and
leverage trends that carry throughout the flight envelope, it is

11

Actual Power, High-fidelity (hp)

Figure 16: Actual vs predicted power of testing dataset, eval-
uated using SVR-based correction model at 50 kts

necessary to unify the models for discrete flight speeds. If
flight speed is included as a predictor of power in the learn-
ing model, it is hypothesized that a continuous velocity model
will be able to make corrections at any flight speed, including
interpolating to velocities at which no training data exists. To
test this hypothesis, data at 50 kts, 150 kts, and 200 kts are
used to train a continuous velocity correction model.
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Figure 17: Actual vs predicted power of testing dataset, eval-
uated using SVR-based correction model at 100 kts
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Figure 18: Actual vs predicted power of testing dataset, eval-
uated using SVR-based correction model at 2000 kts

The input space for this model has four variables: Q, T,
Osrab, and V. Calculations for normalized distance (d) are
modified to include velocity distance when computing data
sparseness. This is subsequently taken into account for tol-
erance (14) calculations in Equation 12. The normalization
scheme described in the Model Correction Algorithm section
describes how normalization of power will be performed us-
ing a velocity dependant minimum, which is done to prevent a

12

model from erroneously biasing data collection towards trim
states near the power-optimal velocity of best endurance. As
before, a support vector regression-based model of error is
used to predict the correction needed to bring the low-fidelity
model in line with the high-fidelity data.

The continuous velocity model is initialized with 20 points,
19 of which are distributed over the 4-dimensional input space
and one point is at the set of predictor variables which min-
imize the total power requirement (Vp.), which is achieved
closest to 50 kts (subject to the resolution of the high-fidelity
data). After 63 iterations, the model meets the quitting criteria
for all the points in the training data set, which brings the total
number of training points required to 83.

The total number of feasible trim states for these three veloc-
ities is 1213, with only 83 used for training. The remaining
points can be used to examine the out-of-sample performance
of the trained model. Figure 19 provides a scatter plot of the
predicted vs actual power, showing how well the continuous
power correction model performs on this testing dataset. Test-
ing dataset performance at each of the three velocities can be
directly compared against the corresponding discrete velocity
model in Figures 12, 16, and 18. Rows 1, 4, and 5 in Ta-
ble 5 provide the RMSE of the model evaluated on this test-
ing dataset at each of the three velocities at which training
data exists.
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Figure 19: Actual vs predicted power of complete testing
dataset using SVR-based correction model trained on 50
kts,150 kts, and 200 kts

Based on this data, and the corresponding plot in Figure 20,
the continuous velocity model performs comparably to the
discrete model. At 50 and 150 kts the power prediction RMSE
is less than 1% larger, while it is 1% smaller at 200 kts. De-
spite this near equivalence of expected error, the continuous



velocity model reduces the data dependency by 30% com-
pared to the combined 118 trim states required for the three
discrete models. Over the velocities spanned by the training
data, 29 points violate the intended tolerance, which is a 52%
improvement upon the 60 violations observed over the three
discrete models. In summary, these results suggest that a con-
tinuous velocity correction model seems to be able to leverage
trends within the data at disparate flight speeds to perform
within 1% of the discrete velocity correction models, but at a
30% reduced data cost, and with 52% fewer violations of the
prescribed tolerance within the testing data.

mLow-fidelity
mCorrected - discrete velocity model
=Corrected - continuous velocity model

Ilﬂ ]

V =150 kts V =200 kts

V =50 kts

Figure 20: RMSE comparison between the low-fidelity and
corrected models for total power at 50, 100, and 200 kts

Interpolation at 100 kts

With flight speed as one of the predictor variables, the trained
model is capable of interpolating between flight speeds where
no data exists. Figure 21 shows the performance of the model
when interpolating to test on the 100 kts data, while the second
row of Table 5 provides the corresponding RMSE for power
and the main rotor controls.

While the continuous velocity correction model performed
well when tested at the same speeds for which training data
was used (RMSE between 7-18%), the interpolated values
at 100 kts significantly under-perform, with RMSE of 43%.
The RMSE for this dataset is 683 hp, with 124 points which
don’t meet the weighted error tolerance. The loss of predic-
tive capability is even more exaggerated for the models of col-
lective and longitudinal cyclic, for which the RMSE grows
from 6-10% to 64-79%. Visual inspection of Figure 21 in-
dicates that this error is evenly distributed across all power
regimes, and consists almost exclusively of overpredictions.
Since the model was not trained on data at 100 kts the perfor-
mance wasn’t expected to be as accurate as it was for the other
speeds. This is because of highly sparse data in the velocity
direction and demonstrates the need for more training points
at 100 kts. Compared to the discrete model, which uses 61
training points at 100 kts, and reduces low-fidelity RMSE by
24%, the interpolated predictions use zero training points at
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Figure 21: Prediction at 100 kts using continuous velocity
model trained at 50 kts, 150 kts, and 200 kts
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Figure 22: Performance at 100 kts using continuous velocity
model trained at 50 kts, 150 kts, 200 kts and 6 points at 100
kts

100 kts, and increase the RMSE of the low fidelity model by
3%.

To improve the predictions, a small number of high-fidelity
points at 100 kts are added, guided by the algorithm based on
maximum weighted error. The final model adds an additional
6 data points at 100 kts to reduce weighted error to within the
tolerance. Performance of this model on the testing dataset
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Figure 23: RMSE comparison for data at 100 kts

at 100 kts is shown in Figure 22. Comparing this scatter plot
against Figure 21 highlights the marked improvement, as the
testing dataset is more closely aligned throughout, and the 124
points in violation of the tolerance are reduced to 11 points.
Figure 23 shows that this trend is consistent with error metrics,
as RMSE for the testing dataset is reduced from 340 to 171 hp,
a 28% reduction in error as normalized by minimum power at
100 kts. With the addition of just 6 points at 100 kts (for a
total of 89 across all flight speeds), the continuous velocity
model now performs 1% better at 100 kts than the discrete
model does with 61 points at 100 kts. The continuous velocity
model also performs as well or better at every tested flight
speed when compared to the discrete models, which require a
total of 179 testing points (twice as many).

Purely Data-Driven Modeling

Algorithm Modifications: To test the value of the low-
fidelity model for improving predictive capabilities with
sparse data, a purely data-driven model will be used for com-
parison. The idea behind data-driven modeling is to find re-
lationship between the system variables without any explicit
knowledge of the underlying process. This approach has
been widely adapted in integrated health management sys-
tems (Refs. 33,34), and guidance systems (Ref. 35).

The difference in the approach for training in this section is the
absence of a low-fidelity model to make corrections (h). With-
out a low-fidelity model underlying the correction model, the
machine learning model must predict on the raw data (power
and controls), rather than the error. Consider the high-fidelity
data (g) and let the support vector regression model fitting this
data be defined as g. If the allowable error (¢) is defined the
same way as in the algorithm section, then this new formula-
tion will replace the model described in Equation 11 with:

g(x,u)+e=Y (26)

Each model is initialized with the same set of data as was used
for the evaluation of the low-fidelity correction approach. For
this study, the iterative process for selection and adding high-
fidelity data to the training dataset is maintained, so that this
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model must still satisfy the same tolerance and quitting cri-
teria for the error as outlined in the algorithm section of the
paper. The error, €, is weighted the same as for the correc-
tion approach (using equation 16), and and the training algo-
rithm used to select additional data is identical. Once training
is complete the models can be directly compared against the
low-fidelity correction models.

Discrete and Continuous Velocity Models: Table 6 repro-
duces the results from the previous section, in which a sep-
arate model was produced to predict power and main rotor
controls at 50 kts, 150 kts, and 200 kts. Figure 24 compares
RMSE of the discrete velocity models, with the corrected con-
tinuous velocity model at 50 kts, 150 kts, and 200 kts. Upon
completion of training, the RMSE in prediction was slightly
higher than that of the correction model, with 1 to 3% greater
error in power (normalized by minimum power at each veloc-
ity). Within the testing dataset, an increase of 50-240% of the
states were in violation of the tolerance criteria after training
was concluded. These results suggest a moderately reduced
performance of the final model, but with far less consistency
of predictions across the control space.

This observation can be confirmed by Figure 25, in which the
actual power requirement vs pure data-driven power require-
ments are compared. In Figure 25 the RMSE is relatively
small for trim states with power requirements less than 2000
hp, but as power increases, the degree of under prediction
grows more severe on average, with errors exceeding 30% on
average for power requirements between 2700 hp 3400 hp.
The major deficiency in this approach, however, is the addi-
tional data required. Each entirely data-driven model required
2.1-4.9 times as much data to train to a similar RMSE as its
correction-based model counterpart.

Next, the ability for the purely data-driven model to reduce
data requirements is considered. Mirroring the process for the
error-correction continuous velocity model, a new surrogate
model is initialized with a training set using 20 points of data
between 50 kts, 150 kts, and 200 kts. The training algorithm
converges with a total of 405 trim states across the three veloc-
ities. Table 7 contains the metrics on training, as well as the

60 : ;
mCorrected - continuous velocity model
~_ |=Discrete velocity data driven model
50 EContinuous velocity data-driven model |
_40f 1
2
w L il
® 30
=
o
20+ B
i JI H Il H 7

V =50 kts = 100kts =150 kts V =200 kts

Figure 24: RMSE comparison of corrected continuous veloc-
ity model with data-driven discrete and data-driven continu-
ous velocity model



Table 6: RMSE of discrete velocity pure-data model evaluated on testing dataset

Velocity Power Collective  Lateral cyclic Longitudinal cyclic  Training set Testing set
(kts) (hp) (deg) (deg) (deg) (n pts.) violations
50 202(19%)  0.82(7.2%)  0.20 (7.3%) 1.1 (7.1%) 287 36 (7.1%)
100 147(19%)  0.83 (8.1%)  0.14 (5.2%) 1.2 (8.3%) 281 41 (8.9%)
150 121 8.6%) 0.74 (6.7%)  0.14 (5.8%) 1.04 (5.8%) 72 32 (13%)
200 380 (13.1%) 0.80(7.1%)  0.23 (8.3%) 1.2 (7.9%) 58 9 (20%)
Table 7: RMSE of continuous velocity pure-data model evaluated on testing dataset
Velocity Power Collective  Lateral cyclic Longitudinal cyclic =~ Training set — Testing set
(kts) (hp) (deg) (deg) (deg) (n pts.) violations
50 181 (17%) 0.7 (6.1%) 0.32(11%) 1.0 (7.0%) 268 21 (4.0%)
100 (interpolated) 412 (52%) 5.4 (53%) 0.8 28%) 3.9 26%) 0 309 (5.2%)
100 (final) 110 (14%) 0.9 (8.8%) 0.2 (7.1%) 0.89 (6.1%) 23 8 (1.0%)
150 118 (8.4%) 1.4(12%)  0.48 (18%) 1.2 (6.6%) 99 10 (4.5%)
200 271 (93%) 1.3(11%)  0.51 (18%) 1.2 (8.2%) 38 8 (12%)
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Figure 25: Actual vs predicted power of 150 kts testing
dataset, evaluated using final data-driven model

metrics provided by evaluating the testing set on this model,
while Figure 24 includes bars of RMSE for the continuous
velocity model evaluated at 50 kts, 150 kts, and 200 kts.

Compared to the discrete data-driven model, which required
417 between the three velocities, the 3% reduction in data is
less significant than the 35% reduction in data dependency for
the low-fidelity correction model. This result confirms that
the presence of the low-fidelity model does have a substantive
effect in reducing the data dependency, likely due to the ac-
curate initial guess it can provide at points in the control and
velocity spaces at which data does not exist.
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Figure 26: Actual vs predicted power of 100 kts testing
dataset, evaluated using initial data-driven model

Interpolation at 100 kts: Figure 26 shows the predicted vs
actual scatterplot of model evaluations on the testing dataset
at 100 kts. Comparison of Figures 21 and 26 visually demon-
strates some of the difference in modeling capabilities when
interpolating. The continuous velocity low-fidelity correc-
tion model interpolated on the testing data at 100 kts with an
RMSE of 340 hp of the minimum power (Fig. 24), while the
RMSE of the continuous velocity purely data-driven model
evaluated on the same points was 412 hp, an increase of 9%.

In Figure 21, this error was primarily accounted for by a small
set of over-predictions that increased in severity for trim states
with higher power requirements. Throughout the domain,



the majority of the model had reasonable agreement with the
model, with 124 violations, while all of the minimum power
region is accurately captured. In Figure 26, the fundamental
trend is incorrectly predicted, as the pure data-driven model
largely over-predicts at minimum power, and largely under-
predicts at higher power requirements. 309 trim states vio-
late the tolerances, with the majority occurring at the lowest
powers, demonstrating a failure to meet the goal of increased
accuracy in that region. This analysis demonstrates the ex-
tent to which an entirely data-driven approach to modeling is
significantly penalized in accuracy when attempting to make
generalizations based on sparse data.

While it took 6 additional points at 100 kts for the low-fidelity
correction model to reduce the error to a satisfactory thresh-
old, the purely data-driven model requires nearly four times as
many to do so. The final model evaluation at 100 kts in Fig-
ure 27 shows comparable performance to the final data-driven
model in Figure 22, but requires a total of 428 trim states to
train, as opposed to 89.
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Figure 27: Actual vs predicted power of 100 kts testing
dataset, evaluated using final data-driven model

CONCLUSION

This study evaluates the ability of a machine learning model to
correct the low-fidelity estimate of vehicle power and main ro-
tor trim controls for a compound helicopter with three degrees
of control redundancy: main rotor speed, auxiliary thrust, and
stabilator setting. A novel algorithm for iteratively enriching
the training dataset based on predicted error weighted by dis-
tance in the control space is introduced. This algorithm pri-
oritizes data generation from a computationally expensive or
costly high-fidelity model in the more desirable and impor-
tant low power regions of the trim space. When trained, this
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algorithm selects new data points to reduce the error near min-
imum power to within 5%, with less than 20% error globally,
using the internal error model to predict which trim state will
deviate most. For this purpose, a support vector regression-
based error model is shown to slightly out-perform a neural
network and a Gaussian regression model.

The analysis confirms that an accurate correction model can
be trained with a sparse dataset the data of 26-61 states (de-
pending on flight speed). The tolerance specification is met
with a 94-96% success rate, which indicates the percent of
testing data which actually fell within the intended weighted
error tolerance. The model is capable of accurate predictions
on total power requirement, as well as the trim settings for the
three main rotor controls.

By integrating the models into a single continuous model with
velocity as an additional input, the machine learning model is
shown capable of generalizing trends on the error correction
between flight speeds and reduce the total data dependency
by 30%, with a slight improvement to success rate in the test-
ing data (95-98%). Furthermore, the ability for interpolation
to additional flight speeds. A model trained only on 83 trim
states between 50, 150, and 200 kts is used to generalize to
100 kts. While the model performs 6% worse than the low-
fidelity model without any correction, it only requires 6 addi-
tional trim states at 100 kts to outperform the model trained
on 61 trim states at just 100 kts.

Finally a comparison is made to a purely data-driven model
in order to isolate and evaluate the contribution of the low-
fidelity model. Training a model to predict power solely
on the high-fidelity data requires 2.1-4.9 times as many trim
states, while the fraction of trim states within the testing data
that meet the tolerance is reduced to 80-93%. The absence of
the low-fidelity model also reduces the ability of the model
to interpolate, with the error of the interpolations at 100 kts
exceeding the low-fidelity correction based model by 9%.
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