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ABSTRACT
In this paper, we propose a heuristic-based fast motion planning framework which can be readily incorporated by the
on-board path planner of Unmanned Aerial Vehicles (UAVs) to generate safe and efficient trajectories while traversing
through challenging environments cluttered with obstacles. The proposed planning technique is effective for the
scenarios where the exact obstacle locations need to be detected during flight and the obstacle detection range is limited
by degraded environmental conditions like fog. Unlike many kinematic based planning strategies, the generated
planned trajectories can be tracked effectively as they preserve the dynamics of the UAV. The planning problem is
graphically represented by discretizing input and state spaces to facilitate usage of discrete search algorithms. We
also propose a heuristic calculation strategy based on dynamics relaxation to accurately encode the obstacle. The
Bellman optimality condition is used to modify the heuristic to facilitate faster search. This faster planning contributes
to requiring a reduced minimum obstacle detection range for receding horizon planning. The proposed algorithm has
been compared against an off-the-shelf nonlinear program solver and the proposed method produced superior planning
times and feasible trajectories avoiding collisions. Further, we analyzed the sub-optimality of the planned trajectories
and the minimum obstacle detection range required for the receding horizon planning framework.

NOTATION

F - continuous chains of integrators for the differentially flat
dynamics
fs - differentially flat dynamics
g - gravity
J - cost function
k - rotational inertia in ψ

m - mass of the UAV
Oi - state of the obstacle of interest ‘i’
p - differentially flat state of the UAV (excluding yaw)
p0 - initial state of the UAV
PD - set of allowable final states of the UAV
q - states of UAV in the differentially flat dynamics
Ri - ‘Region of Influence’ around Obstacle Oi
Tp - total available propeller thrust
t f - final time of single obstacle planner
U - feasible input set of the differentially flat model
u - inputs to the differentially flat model
uψ - yaw moment
v - inputs to the differentially flat model excluding yaw mo-
ment
Vcruise - Cruise velocity of UAV
W - feasible set of lattice inputs
w - discrete lattice input
x,y,z - planned position of the UAV in the inertial frame
φ/θ/ψ - roll/pitch/yaw angles
G - directed tree structure
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S - set of vertices
E - set of Edges
T - length of a timestep s0 - root vertex
s - a vertex of G
Sg - set of goal vertices
sg - goal vertex
µ(s) - mapping that returns underlying position co-ordinates
of a given vertex
d(s,s′) - Step cost from vertex s to s′

g(s) - Path cost from s0 to s
h(s) - Heuristic - Estimated optimal cost-to-go to the goal
from a vertex s
f (s) is the estimated optimal total cost of a path to any goal
vertex through the vertex s
[vx, vy, vz] - velocities in the reduced order system
p̄ - reduced order state space
Ḡ - reduced order graph
S̄ - set of vertices in reduced order graph
Ē - set of edges in reduced order graph
s̄ - vertex in reduced order graph
h1(s̄) - heuristic for reduced order graph
g∗1(s̄g) - optimal path cost to goal in reduced order graph
f (s)correct - corrected total cost of the optimal path from root
to goal through s
child(s) - set of vertices with underlying state that is achieved
by applying any lattice input to the underlying state of s
h(s)correct - corrected heuristic of s
h∗(s) - optimal cost to go
G′ - explored sub-tree of G
tplan - computation time of planning algorithm
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[x0,y0,z0] - initial position co-ordinates
Dcontract

od - minimum obstacle detection range to satisfy safety
contract
∆Dod - increment in obstacle detection range due to planning
time

INTRODUCTION

In order to ensure safe and efficient performance of Un-
manned Aerial Vehicles (UAVs) while they execute complex
mission tasks, it is important that their navigation frame-
work is fully autonomous with minimal human intervention.
Autonomous navigation becomes especially important when
the mission involves traversing through an unknown envi-
ronment cluttered with obstacles, whose sizes and positions
are not known before-hand. Here, the UAV is expected to
detect the obstacles and plan safe and efficient trajectories
on-the-fly. Since the obstacle detection range can be lim-
ited by the environmental conditions like fog, one particu-
lar approach as discussed in (Ref. 1), involves avoiding ob-
stacles sequentially, that is, one at a time. However, using
conventional optimization-based planners are ineffective for
on-board path planning due to their high solution time, as dis-
cussed in (Ref. 2) and (Ref. 3), which would restrict the UAV’s
performance by demanding a longer obstacle detection range
and/or restricting the maximum cruise velocity.

The main objective of this work is to develop a fast mo-
tion planning method which can be readily incorporated and
implemented in an online path-planning setting discussed in
(Ref. 1). Several approaches in literature including (Ref. 4)
and (Ref. 5) describe how graphical representation of the plan-
ning problems can be exploited to efficiently generate motion
planning solutions for aerial vehicles. The authors in (Ref. 6)
investigate flight path planning under weather uncertainty on
discrete airways graphs and model this problem as a shortest
path problem. Extending this approach, we formulate a graph-
ical representation of the planning problem which allows the
use of fast-discrete planning algorithms for the trajectory gen-
eration task while ensuring that the solution is feasible.

Since it is important to discretize the input space to achieve
faster planning as discussed in (Ref. 7), the original feasible
input set is converted into its equivalent lattice input set which
is represented as edges of a tree structure as in (Ref. 8). Fur-
ther, the corresponding UAV system states are represented as
vertices in the aforementioned directed tree. Now, off-the-
shelf path planners can be directly deployed onto this frame-
work for optimal path search towards the goal. A∗ algorithm
is one of the best-first search methods which uses a heuristic
function to guide the search (Ref. 9). The work in (Ref. 10)
adapts a well-known reachability analysis techniques based
on a delete relaxation of the problem. (Ref. 11) presents a
different approach that computes inadmissible heuristics by
learning expansion Delay for transitions in the state space.
Since incorporating common heuristics like Euclidean dis-
tance (Ref. 12) in the state space would lead to higher plan-
ning time with unnecessary vertex visits for the 2nd order sys-

tem in focus, we propose an efficient heuristic calculation
technique through model reduction by relaxing the dynam-
ics. Further, we store the known heuristic values in a data
structure which enables trading off memory to achieve even
shorter planning times. Although the designed heuristic esti-
mation technique was fast enough to achieve sub-second plan-
ning times, we observed that corrections could be made to
the heuristic function to drive it towards the optimal cost. To
this end, we present a heuristic learning technique that adjusts
the heuristic function with each new vertex visit towards the
goal. We also include the proof of optimality, admissibility
and consistency properties for the proposed correction of the
heuristic. Moreover, We formulate a receding horizon plan-
ning framework to handle multiple obstacle avoidance scenar-
ios. The faster planning time contributes to having a shorter
required obstacle detection range for receding horizon plan-
ning. Case studies were conducted by implementing the pro-
posed algorithm to compare against an off-the-shelf nonlinear
program solver. The results validate the developed method by
producing sub-second planning times and feasible trajectories
avoiding collisions. The proposed technique was able to re-
duce the planning time by a factor of 15 when compared to
solving the optimization problem with an off-the-shelf solver.
Further, We have included an analysis on the optimality of
the planned trajectories and the minimum required obstacle
detection range for the receding horizon planning framework.

PROBLEM DESCRIPTION

In this work, we consider the scenario as shown Fig. 1,
where a UAV cruising towards its target (direction) must pass
through an environment cluttered with obstacles, whose exact
positions are sizes are not known beforehand. For the UAV to
be able to plan and execute safe trajectories inside the obstacle
field, the parameters of the UAV (maximum cruise velocity,
control input bounds and obstacle detection range) and guar-
antees environment (maximum obstacle size and minimum
separation) should the satisfy single-obstacle safety contract
as well as the multiple-obstacle safety contract as discussed
in (Ref. 13) and (Ref. 1). The contracts construction involves
developing Regions of Influence (ROI) denoted by Ri around
each obstacle Oi as shown in Fig. 2a such that the UAV can
avoid Oi while remaining inside Ri before cruising again. If
no two ROIs in the obstacle field intersect, the UAV can se-
quentially plan and avoid obstacles safely. This way , multiple
obstacle avoidance scenario in an unknown environment can
be handled by planning on-board for each (single) obstacle,
as long as the obstacle is detected before the UAV enters it’s
Region of Influence.

Single Obstacle Planner

For the planned trajectories to be executed with minimum
control tracking error, the mathematical model based trajec-
tory planners consider the dynamics (and kinematics) of the
UAV as well as the environment as hard constraints and op-
timize a desired cost function such as duration of flight, path
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Figure 1: Schematic of UAV online path planning scenario in
the presence of multiple obstacle

(a) Schematic of the sequential planning approach inside the obstacle
field

(b) Top view schematic of single-obstacle avoidance

Figure 2: Schematic of sequentially avoiding multiple obsta-
cles

length or fuel usage (Ref. 2). For sequential avoidance, this
constrained-optimization problem (1) is solved for a single
obstacle Oi. Here, we denote the state and control input at
time t as p(t) and u(t), respectively. The objective (cost)
function J in this work is chosen to be the total planned path
length. The constraints of the optimization problem are due
to the differentially flat dynamics fs, initial and feasible ter-
minal states (p0,PD), obstacle Oi and the Region of Influence
Ri around the obstacle. Here, p0 is the state of the UAV when
it enters Ri with cruise velocity (Vcruise) and PD is the set of
states on the other side of Ri such that the UAV leaves Ri with
the same cruise velocity. Each obstacle Oi is assumed to be
a closed, convex set and the feasible control input set is as-
sumed to have a box-like structure, where each input has an
upper and lower bound. The Region of Influence constraint
enforces the planned trajectory to not only avoid the obstacle,
but also stay inside Ri before reaching the terminal state in
PD.

Although implementing the framework in (Ref. 1) guarantees

the feasibility of (1), solving the optimization problem is non-
trivial since it is non-convex with a large number of decision
variables. Further, using an off-the shelf solver for numeri-
cally calculating the optimal solution can be time consuming,
making it unsuitable for online path planning. Therefore, we
develop a discretized graph based solution whose search strat-
egy is driven by a heuristic. We reduce the implementation
time even further by designing a heuristic that takes the con-
straints in (1) into consideration.

min
p(·),u(·),t f

J(p(·), t f ), (1)

cost function (path length ),

s.t. ṗ(t) = fs(p(t),u(t)),
differentially flat dynamics of the UAV

p(0) = p0, p(t f ) ∈ Pd ,

initial and terminal state constraints

p(t) /∈ Oi, u(t) ∈ U ∀t ∈ [0, t f ],

obstacle avoidance, path and input constraints

p(t) ∈ Ri ∀t ∈ [0, t f ],

Region of Influence constraint

GRAPH SEARCH BASED SOLUTION

In this section, we look at how the previously defined con-
strained optimization problem can be interpreted as an equiv-
alent graph search problem with a discrete action space. We
first describe the dynamics model of the UAV and the dis-
cretize the feasible control input set. We then explain how the
constraints in (1) are incorporated and how A∗ (path planning
algorithm) can be used for receding horizon planning.

UAV Dynamics Model

As discussed in (Ref. 13), the differentially flat UAV dynam-
ics are shown in Eq. (2). This approach enables us to ex-
ploit the equivalent linear double integrator dynamics where
the differentially flat state is q and synthetic control input is v.
The relationship between the actual control inputs (total pro-
peller thrust (TP), roll (φ ), pitch θ and yawing moment uψ )
and the synthetic inputs (linear accelerations ẍ,ÿ,z̈ and yawing
acceleration ψ̈) is shown below in Eq. (3).

q̇ = fs(q,v) = Fq+Gv, (2)

q = [x, ẋ,y, ẏ,z, ż,ψ, ψ̇]T ,

v = [ẍ, ÿ, z̈, ψ̈]T
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φ = tan−1(
−ẍsinψ + ÿcosψ√

(g− z̈)2 +(ẍcosψ + ÿsinψ)2
), (3)

θ =− tan−1(
ẍcosψ + ÿsinψ

g− z̈
),

Tp = m
√

ẍ2 + ÿ2 +(g− z̈)2,

uψ =
1
k

ψ̈

Since, constraints on yaw are independent of the rest of
the states, we ignore the yaw dynamics. Assuming box-
constraints on the original inputs, we define the state, con-
trol input excluding yaw as p = [x, ẋ,y, ẏ,z, ż]T , u = [ẍ, ÿ, z̈]T

respectively and determine the equivalent feasible synthetic
input set U⊂R3 as discussed in (Ref. 1). This synthetic input
set which is independent of yaw, takes the shape of a frustum
as shown in Fig. 3a. Later, U is discretized to obtain lattice
representation W. These lattice inputs (w ∈W), when applied
for a defined time step T , can be interpreted as primitive ac-
tions. The lattice input set W is as shown in Fig. 3a.

(a) Input space discretization

(b) 2D view of graphical representation

Figure 3: Discretization for graphical representation

Equivalent Graph Search Problem

To define the analogous graph search problem, we represent
the state space in a tree structure. A 2D view of this graph-
ical representation is shown in Fig. 3b. First, let us define
directed tree G(S,E) with s0 ∈ S as the root vertex. Here, S,E
denotes the set of vertices and the edges of the tree, respec-
tively. Each of these vertices are assigned an specific state of
the UAV dynamics. We start with setting the initial state, p(0)
as the underlying state of the root vertex s0. We apply the lat-
tice inputs to the system for a predefined duration T and the
final state is set as the underlying state of a new child vertex of

s0 connected by an edge corresponding to the applied lattice
input. When any lattice input w is applied at the underlying
state p0 of the root vertex s0 at time t0, the discretized UAV
system dynamics (with zero-order hold) are evaluated for T
duration from t = t0 to t = t0 + T and the resulting system
state p(t0 +T ) is identified as,

p(t0 +T ) =


0 T 0 0 0 0
0 0 0 0 0 0
0 0 0 T 0 0
0 0 0 0 0 0
0 0 0 0 0 T
0 0 0 0 0 0

p(t0)

+



1
2 T 2 0 0
T 0 0
0 1

2 T 2 0
0 T 0
0 0 1

2 T 2

0 0 T

w.

(4)

We assign p(t0 +T ) to the child vertex of s0 that is connected
to s0 by the edge corresponding to the applied input. This
process is repeated for all child vertices of current vertices by
branching out through all inputs w ∈W. This formulation al-
lows both the dynamical constraints and the input constraints
to be embedded in the graphical representation itself. Now,
the required constraints in the state space such as the initial
and final states, Region of Influence and the obstacles can be
directly imposed as restrictions on the graph. We do this by
restricting access to the vertices reachable from trajectories
that do not satisfy the aforementioned constraints as shown in
Fig. 3b. Further, all states that satisfy terminal state condition
p(t f ) are defined as the underlying UAV states of the set of
goal vertices, Sg. Note that each vertex in G can be traversed
from the root by applying a specific sequence of lattice ac-
tions. Therefore, the underlying UAV state of each vertex is
reachable from the root and for any path that start from the
root that exists in G, there is a corresponding trajectory that
follows the UAV dynamics. In the graphical representation,
the original optimization problem is represented as an equiv-
alent graph search problem. Hence, the solution is to find a
path to any goal state sg from the root. We look at how this
solution is developed using A∗ algorithm in the next section.

Shortest Path Solution using A∗

In the defined graphical representation, the optimization prob-
lem is now represented as a shortest path problem from s0 to
any sg ∈ Sg. We propose to use a well-known informed search
algorithm A∗ (Ref. 9) to find the optimal path. Let µ : s → p
be a mapping that returns the position co-ordinates of the un-
derlying UAV state for a given graph vertex s. Then, we define
d(s,s′) as the step cost from a vertex s to its child vertex s′. In
line with the cost function of the optimization problem in Eq.
(1), we define this as the Euclidean distance between the spa-
tial co-ordinates of the underlying UAV states. We can then
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accumulate the step cost from the start vertex to find the path
cost, g(s) from the start s0 to s. A∗ also uses an estimate of the
optimal cost-to-go to the goal from a vertex s as the heuris-
tic h(s). The method to compute the heuristic is discussed in
the sections ahead. Further, A∗ keeps track of two specific
costs g(s) and f (s) to conduct selective vertex expansion as
defined in Eq. (5). Here, f (s) is the estimated optimal total
cost of a path to any sg ∈ Sg through the vertex s. With the
costs defined, A∗ iteratively compute f (s) for each child (im-
mediate descendant) vertex of the current vertex and always
chooses the child vertex with the lowest f (s) for exploration.
This process continues until any of the goal states sg ∈ Sg is
reached. In multiple obstacle scenarios, we propose that sim-
ilar search can be conducted in a receding horizon fashion.
For A∗ algorithm’s best-first search to be faster, the heuristic
function must correctly reflect the optimal cost-to-go. Hence,
heuristic formulation is a critical component in the planning
algorithm.

d(s,s′)≜ ||µ(s′)−µ(s)||, (5)
g(s′) = g(s)+d(s,s′),

f (s)≜ g(s)+h(s).

HEURISTIC FORMULATION

In this section, we discuss the proposed heuristic formulation
in detail. The heuristic h(s) provides an estimate of the op-
timal cost-to-go to any of the goal vertices sg ∈ Sg from a
vertex s. A common heuristic formulation is to use the Eu-
clidean distance between spatial co-ordinates of s and sg i.e.
h(s) = ||µ(sg)− µ(s)||] (Ref. 12). However, this estimation
fails to encapsulate the obstacle presence in the Region of In-
fluence. Therefore, A∗ method takes longer time to provide a
solution and engages in unnecessary vertex expansions. This
is evident in the planning run shown in Fig. 4a. However,
estimating better heuristics that encode the obstacles and take
the system dynamics into account would require a significant
computation time. This is not feasible when the planner oper-
ates online as it has to plan the trajectory before the next Re-
gion of Influence is encountered. As a solution, we propose a
method for heuristic calculation through rapid planning on a
reduced system model.

Heuristic Calculation through Dynamics Relaxation

In this approach, the 2nd order dynamics of the differentially
flat UAV system is relaxed to formulate a reduced order sys-
tem as in [ẋ, ẏ, ż]T = [vx, vy, vz]

T . Here, p̄= [x, y, z]T denotes
the spatial co-ordinates of the UAV and we assume that the
velocities [vx, vy, vz] can be directly applied as inputs to the
system, i.e. we assume accelerations are unbounded and in-
stant. Similar to the previous graphical representation, we de-
fine another graph Ḡ(S̄, Ē). Following the previously defined
process the reduced order system and the states p̄ are encoded
to Ḡ with vertices s̄. Now, A∗ can be deployed on Ḡ to find
the shortest path to a goal vertex and the Euclidean distance

can be used as the heuristic h1(s̄) to estimate the cost-to-go.
This heuristic function is suitable as the reduced order system
dynamics can be easily evaluated. Therefore, planning can be
completed faster. When a solution is found for shortest path
in Ḡ, the optimal cost to go to the goal g∗1(s̄g) is accumulated
by evaluating the action sequence in the shortest path. In this
approach, we propose to use g∗1(s̄g) as the estimated heuristic
for the full order system i.e. h(s) = g∗1(s̄g). This estimation
provides the A∗ method with a better heuristic that encodes
the obstacle presence in the Region of Influence for graph G.
Therefore, this results in fewer vertex explorations during the
planning process as shown in Fig. 4a.

(a) Euclidean Heuristic

(b) Proposed Heuristic

Figure 4: Path search evolution under different heuristics
for cylindrical obstacle (radius= 1m, height= 4m, centroid=
(4.59,2,2))

The heuristic formulation is further extended by the mainte-
nance of a tabular memory structure that is used to store the
heuristic values for known vertices of the exploration process.
This approach leverages storage capacity to gain an advantage
in computational time. The memory block is saved at the end
of each planning run and then reloaded when the next plan-
ning session begins.

Learning the Heuristic Function

It is evident that the proposed formulation enables faster es-
timation of a more accurate heuristic function. However, it
does not reflect the optimal cost yet. We propose to apply a
correction to the heuristic that is saved in the memory, allow-
ing the heuristic to be improved towards the optimal cost-to-
go at each step of planning. This is conducted based on the
following result which is a consequence of acyclic properties
of tree structures as in (Ref. 14),
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Result 1 Let, s′ be any child vertex of a vertex s of a tree
structure G. Any path from root to a goal vertex that passes
through a child s′ must have passed through its parent s.
Therefore, if a path from root vertex to a goal vertex exists
through s′, same path exists through s.

Now, we can use the path cost through s′ to correct the es-
timate of the path cost f (s) for s. To this end, we state the
Proposition 1.

Proposition 1 If f (s′)< f (s) for any child vertex s′ of a par-
ent s, f (s) can be corrected towards the optimal total cost as
f (s)correct = mins′∈child(s) f (s′).

Proof of Proposition 1 From Result 1 we know that any path
from root to a goal vertex through any child vertex s′ exists for
its parent s. Therefore, if f (s′)< f (s) a better path is available
through the child s′. When all children of s′ are considered,
the best path is the one with minimum cost. Thus, we find the
correct path cost for s as f (s)correct = mins′∈child(s) f (s′).

From Proposition 1 and Eq. (5), we can derive the corrected
heuristic,

h(s)correct = min
s′∈child(s)

d(s,s′)+h(s′). (6)

For each vertex in the explored sub-graph, a corrected heuris-
tic is found and included in the memory. This correction can
be shown to converge to the optimal cost-to-go for the ex-
plored sub-graph. Further, it can be proven that the Bellman
optimality conditions (Ref. 15) holds for this heuristic update.
Moreover, the admissibility property of a heuristic function
states that the estimated cost-to-go h(s) is an under approxi-
mation of the optimal cost to go h∗(s).

h(s)≤ h∗(s). (7)

Admissibility guarantees an optimal solution by A∗ search.
Further, a heuristic h(s) is consistent if and only if,

h(s)≤ d(s,s′)+h(s′), (8)

for any parent - child pair s,s′. The consistent property dic-
tates that the search will not do unnecessary vertex visits.
The proposed heuristic correction can be proven to preserve
the admissibility and it imposes consistency on the corrected
heuristic. At each step of exploration, the correction to the
heuristic at each vertex is propagated backwards along a path
on the tree from the leaves at the frontier to the root. When
any goal state is reached this back-propagation corrects the
heuristic on the optimal path to optimal cost-to-go which is
the ideal heuristic function. When reused in the next planning
run, the corrected heuristic greatly reduces the planning time
by avoiding unnecessary vertex visits.

Optimality of the Heuristic Update

Let G′ ⊂ G be the explored sub-tree of the tree G and h∗(s)
be the optimal cost-to-go to a goal vertex from any vertex s.

The optimal cost-to-go is also called the Value function in lit-
erature. For any child vertex s′ ∈ G′ of a parent vertex s ∈ G′,
let the optimal cost-to-go be denoted as h∗(s′). Then, we have
the Bellman optimality condition stated for the parent vertex
s as,

h∗(s) = min
s′∈child(s)

d(s,s′)+h∗(s′), (9)

with d(s,s′) as the step cost.

In the proposed heuristic learning method, the corrected
heuristic at a parent vertex s ∈ G′ of child vertices s′ ∈ G′

is as follows.

h(s)correct = min
s′∈child(s)

d(s,s′)+h(s′), (10)

with d(s,s′) as the step cost.

We see that h(s)correct follows the Bellman optimality con-
dition. Therefore, the corrected heuristic is optimal for the
explored sub-tree G′. Thus, the proposed heuristic correction
preserves the Bellman optimality within the explored sub-tree.

Admissibility Preservation of the Heuristic Update

Admissibility states that any heuristic does not over estimate
the cost of reaching the goal. Thus, if the initial heuristic h(s)
is admissible, we have h(s)≤ h∗(s) from (7). In the proposed
heuristic update in Proposition 1 for any vertex s,

f (s)correct ≤ f (s), (11)
g(s)+h(s)correct ≤ g(s)+h(s), (12)

h(s)correct ≤ h(s). (13)

If the initial heuristic is admissible, then h(s)correct ≤ h∗(s).
The heuristic update preserves admissibility if started with an
admissible heuristic.

Consistency of the Heuristic Update

Consistency states that the heuristic is monotone and satisfies
(8). From the heuristic update in (6), we have that,

h(s)correct ≤ d(s,s′)+h(s′). (14)

Therefore, the heuristic update imposes the consistency on the
heuristic in the explored sub-tree.

RESULTS

Receding Horizon Implementation

The proposed solution is implemented as a receding horizon
planner to enable planning for multiple obstacles. The satis-
faction of the safety contract ensures that ROIs do not inter-
sect. Thus, a plan is computed for the next ROI, right after
the obstacle has been detected while executing the plan for
the current ROI. However, the safety contract imposes a re-
quirement on the minimum obstacle detection range denoted
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Figure 5: Proposed architecture for receding horizon imple-
mentation. Next obstacle must be detected by at least tplan
before the next ROI.

as Dcontract
od . Previous work in (Ref. 1) evaluated Dcontract

od to
be 4m analytically. However, it does not take the planning
time tplan in to consideration. Therefore, we consider the ef-
fect of tplan as it plays a critical role in the implementation the
proposed receding horizon planning framework.

As in Fig. 5, suppose a plan is available for the ROI of obsta-
cle 1. While the plan is being executed, the system model
is used to predict the exit state. If another obstacle is de-
tected, a plan can be then computed to navigate the next ROI.
From the experiments described in the next section, we have
empirically evaluated the planning time tplan under varying
cruise velocities and initial positions. This requires that the
obstacle must be detected at least tplan duration before en-
tering the next ROI. The detection requirement translates in
to a required increment to the obstacle detection range by a
distance of ∆Dod = vcruise × tplan. Therefore, the minimum
required detection range is Dod = Dcontract

od + vcruise × tplan.
Given that the required obstacle detection range is satisfied,
the proposed planning architecture can be implemented as a
receding horizon planner for multiple obstacle filled environ-
ment. We have analyzed and compared the performance in-
cluding the required increase of the obstacle detection range
for the proposed approach against that of an off-the-shelf op-
timization problem solver in the next section.

Performance comparison

We present outcomes of the proposed strategy implementation
in comparison with an off-the-shelf optimization solver. This
simulated case studies was carried out to evaluate the plan-
ning time of the proposed approach and the trade off of the
optimality of the trajectory. Further, we have evaluated the
proposed planning algorithm on the minimum required obsta-
cle detection range. The goal of the proposed approach is to
develop a faster and feasible solution by trading-off the op-
timality of the solution. We compare the proposed approach
with CasADi which is an off-the-shelf solver for non-linear
optimization problems.

Experiment setup In this analysis, we used a work space of
pillar type cylindrical obstacle as in Fig. 10b. We observed
that under the variations in the initial z co-ordinate, the prob-
lem set up is invariant due to the obstacle shape. We varied the
initial y co-ordinate such that y0 ∈ (1m,3m) and the cruise ve-
locity in positive x direction such that vcruise ∈ (1m/s,2.8m/s)
to create 1000 initial states. In the tested scenario, the goal

Figure 6: Comparison of planning time between the pro-
posed algorithm (max = 0.3531s) and Non-Linear Pro-
gram (NLP) solver (max = 6.38s) for y0 ∈ (1m,3m) and
vcruise ∈ (1m/s,2.8m/s) for a cylindrical obstacle (radius=
1m, height= 4m, centroid= (4.59,2,2)).

was to get past 8m in x direction. This experiment was con-
ducted using MATLAB ver. R2021a on a workstation with
an Intel core i7-8700 CPU running at 3.2GHz with 16GB of
volatile memory.

Planning time We evaluate the planning time for each ini-
tial state using CasADi solver and the proposed approach. In-
cluded Fig. 6 shows the variation of the planning time against
initial cruise velocity and y position. We observe that the pro-
posed approach has more than 15 times faster planning times
on average when compared against the optimization problem
solver. The run time for each of the planning runs are within
sub-second levels for the proposed algorithm. Further, faster
planning times allow a reduction in the required expansion of
the obstacle detection range. This is critical in implement-
ing the receding horizon planner. Therefore, the proposed ap-
proach is suitable for a realtime implementation in an online
receding horizon planning framework when multiple obsta-
cles are present as evident through the presented results.

Sub-optimality The discretization of the inputs and the state
space to construct the graphical representation contributes to
a sub-optimality in the resulting trajectories of the proposed
approach. We present this trade off in Fig. 7 as a comparison
of resulting trajectory length of the proposed approach against
the optimization problem solver. We observe a < 20% sub-
optimality in the proposed approach. However, this trade off
is tolerable as the resulting trajectory is feasible and the plan is
computed with sub-second planning times allowing receding
horizon implementation with a lower obstacle detection range
even at higher velocities.

Obstacle detection range As described in the Receding
horizon implementation, planning for multiple obstacles re-
quires a minimum obstacle detection range of (Dcontract

od +
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Figure 7: Sub-optimality in path length of trajectories from
the proposed algorithm compared with the of path length
of trajectories from Non-Linear Program (NLP) solver for
[x0,y0,z0] = [0,2,2] and vcruise ∈ (1.4m/s,2.8m/s) for a
cylindrical obstacle (radius= 1m, height= 4m, centroid=
(4.59,2,2)).

∆Dod) where Dcontract
od = 4m, ∆Dod = vcruise × tplan as a plan

must be produced before the UAV reaches the ROI. The mini-
mum required obstacle detection range for the proposed algo-
rithm and the Non-linear program solver are compared in Fig.
8. We see that the using the optimization solver on-board in
the receding horizon routine would require the UAV to have
at least 50% longer obstacle detection range than what the
proposed algorithm would require. Further, we observe that
this increase would be even more (up to 120%) for higher
cruise velocities. As the required increment of obstacle de-
tection range is smaller in the proposed approach, we visu-
alize it in Fig. 9 in comparison with Dcontract

od . We observe
that the proposed method only requires an increment less than
4% of Dcontract

od even with higher cruise velocities. Therefore,
due to the faster planning times, incorporating the proposed
approach into the planner would enable the UAV to fly with
higher cruise velocities inside the obstacle field where visibil-
ity is limited.

Further, a resulting planned trajectory from the proposed ap-
proach for initial position of [x0,y0,z0] = [0,2,2] is shown in
Fig. 10b and Fig. 10c. It is observed that the planned trajec-
tories avoid the obstacle successfully and they are the feasible
trajectories for the utilized UAV model as the system dynam-
ics are not violated in the planning process.

CONCLUSIONS

In this paper, we have proposed and demonstrated a heuristic
based motion planning strategy for UAVs with fast planning
times. Based on previous work, multiple obstacle avoidance
problem was decoupled to formulate single obstacle avoid-
ance problem using the idea of region of influence. The plan-
ning is then represented as optimization problem constrained

Figure 8: Minimum required obstacle detection range,
(Dcontract

od + ∆Dod) where Dcontract
od = 4m, ∆Dod = vcruise ×

tplan for the proposed algorithm compared with the Non-
Linear Program (NLP) solver for [x0,y0,z0] = [0,2,2] and
vcruise ∈ (1.4m/s,2.8m/s) for a cylindrical obstacle (radius=
1m, height= 4m, centroid= (4.59,2,2)).

by the UAV dynamics, ROI bounds and the obstacle. We
proposed a graphical representation of the planning problem
where the state, dynamics and the inputs are incorporated in
to the graph structure. This allows the use of heuristic based
graph search approaches like A∗ to compute feasible solutions
faster. In such approaches, the design of the heuristic function
plays a critical role. We have proposed a heuristic calcula-
tion based on dynamics relaxation of the original problem.
When the exploration is conducted, the calculated heuristic
is dynamically corrected to satisfy Bellman optimality of the
explored sub-graph. Further, we maintain a memory of the
previous heuristic values to help fast search. We also pro-
pose a receding horizon planning framework for multi obsta-
cle avoidance.

The proposed approach showed superior planning times when
compared against an off-the-shelf nonlinear program solver
with minor sub-optimality. Also, the studies validated that
the proposed approach is implementable in a receding horizon
framework with minimal required obstacle detection range
when compared against the NLP solver.

In conclusion, the proposed heuristic based planner was able
to achieve accelerated motion planning supporting a reced-
ing horizon implementation framework. In addition, the pro-
posed heuristic calculation and correction method allows it to
be extended towards complex planning scenarios. Further, we
find that it is important to evaluate the proposed method in
the presence of disturbances and model uncertainties in the
future.
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