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ABSTRACT
The complex dynamics of rotorcraft structures under varying operational and environmental conditions demand the
development of accurate and robust-to-uncertainties structural health monitoring (SHM) approaches. The inherent
uncertainty within monitoring data makes it difficult for conventional methods to accurately and robustly detect and
quantify damage without the need for a large number of data sets. In addition, due to the time-varying nature of ro-
torcraft operations, such conventional metrics might still fail even with abundance of data. In this paper, we propose
a unified probabilistic damage detection and quantification framework for active-sensing, guided-wave SHM that fo-
cuses on monitoring rotorcraft structural “hotspots”. The proposed framework involves three stages: The first stage
incorporates statistical damage detection based on stochastic non-parametric time series (NP-TS) models of ultrasonic
wave propagation signals within a hotspot sensor network configuration. The second stage involves the statistical path
selection, where a NP-TS representation is used for the sole purpose of identifying damage-intersecting signal (wave
propagation) paths, that is the paths that are most sensitive to damage, in order to use them in the subsequent damage
quantification stage. That last stage achieves probabilistic damage quantification, where the results of the NP-TS mod-
els are used to train Bayesian Gaussian Process regression and classification models. This unified framework ensures
accurate and robust damage detection and quantification in a data-efficient manner since only damage-intersecting
paths are selected and used in the analysis. The performance of the proposed framework is compared to that of con-
ventional state-of-the-art damage indices (DIs) in detecting and quantifying simulated damage in two representative
coupons: a Carbon Fiber Reinforced Polymer (CFRP) coupon and a stiffened aluminum (Al) panel. It is shown that
the proposed framework outperforms conventional DI-based active-sensing guided-wave SHM methods.

INTRODUCTION

In today’s urban air mobility (UAM) “revolution”, safety is
one of the most challenging barriers to the adoption of many
of the designs being proposed. The notion of eVTOL sys-
tems falling from the skies in an urban environment is simply
too alarming. In this context, the Health and Usage Monitor-
ing (HUMS) community is pushing the boundaries in order
to develop more accurate and more robust, online Structural
Health Monitoring (SHM) tools and systems that can ensure
the safety of passengers and pedestrians alike. On a rotorcraft,
this task is a complex one owing to the time-varying and non-
linear nature of structural dynamic responses (Refs. 1, 2), as
well as complex failure modes that can be easily masked by
the effects of varying operating and environmental states in
the face of uncertainty (Refs. 3–5). Thus, there lies a need
for the development of active-sensing SHM methods, where
proper understanding, modeling, and analysis of stochastic
structural responses under varying states and damage char-
acteristics is achieved for clearing the road towards enabling

Presented at the VFS International 76th Annual Forum &
Technology Display, Virginia Beach, Virginia, October 6–8, 2020.
Copyright c© 2020 by the Vertical Flight Society. All rights reserved.

the fully-automated, online monitoring of rotorcraft structural
health and condition-based maintenance policies.

To this end, Health/Damage Indices (H/DIs) have been an in-
tegral part of any SHM/HUM system, in which some features
of the signal for an unknown structural state are compared
to that coming from the healthy structure (Refs. 6, 7). The
most-widely used DI approaches are based on the time de-
lay of specific modes in the acousto-ultrasound signal, the
amplitude/magnitude of the signal, and the energy content
of the signals, all used as the features for damage detec-
tion (Refs. 3, 6–10) and quantification (Refs. 11–14). These
approaches, thereon denoted as conventional DI-based meth-
ods, have been used extensively owing to their simplicity, as
well as the damage-no damage paradigm entertained by this
analysis tool, which facilitates decision-making by maintain-
ers on the ground (Ref. 8). However, there exists a num-
ber of challenges these types of methods are facing when it
comes to damage detection. Mainly, the aforementioned is-
sues (lack of robustness to uncertainties and applicability to
complex structures) form the most compelling challenges fac-
ing the conventional DI-based approaches for damage detec-
tion (Refs. 1, 4, 5, 15–18).
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In addition, the need for user-defined damage thresholds for
damage detection (Refs. 19, 20), and the phenomenon of sat-
uration (Ref. 21) are also two major challenges faced by such
methods. As such, there has been a plethora of research
endeavors during the last decade aiming to enhance the de-
tection and quantification abilities of conventional DI-based
methods, as well as propose new metrics for damage detec-
tion and quantification. For damage detection, some of the
most common approaches enhance current time-domain DIs
by adding physics-based terms into the DI formulation, such
as terms that depend solely on guided-wave propagation coef-
ficients (see for instance (Refs. 3, 22)). Other approaches use
frequency-domain or mixed-domain DIs, which exhibit better
damage detection performance compared to conventional DIs
(see for instance (Refs. 8,19,23)). Both of these strategies are,
however, not probabilistic in nature, and are thus still prone to
significant errors due to various sources of uncertainty. An-
other family of “enhanced” DI-based methods is based on
baseline-free techniques, which show increased robustness to
varying conditions owing to the lack of pre-sampled base-
line signals (see (Refs. 20, 24)). However, they oftentimes
require knowledge of dispersion curves for the components
being monitored and dictate sophisticated actuation strategies.
In addition, it has been shown that, depending on the actuator-
sensor path from which the signal is coming, the evolution of
the DIs can proceed in a manner uncorrelated with damage
evolution (Refs. 8,25), which clearly limits the applicability of
many of these techniques to specific sensor network designs
and simple boundary conditions. Although there are recent
studies on averting this latter drawback (Refs. 26, 27), these
approaches still require significant user experience in defin-
ing detection thresholds.

For damage quantification, due to the drawbacks of the DI ap-
proach outlined above, many researchers turned their attention
to advanced signal processing techniques in order to quantify
damage in an active-sensing framework (see (Refs. 28–33)),
such as the wavelet and Hilbert-Huang transforms. While all
of these techniques indeed show superiority to approaches uti-
lizing DIs, they still lack the proper determination of quan-
tification confidence bounds, and are thus not suitable for
stochastic systems without further development. Other quan-
tification approaches in the literature of active-sensing guided-
wave SHM involve the use of analytical guided-wave models;
see for instance (Refs. 34–36).

Because of the drawbacks of the aforementioned approaches,
many researchers have proposed the use of statistical and/or
probabilistic methods in devising active-sensing SHM method
(for instance see (Refs. 37–46) for probabilistic and/or statis-
tical damage detection and localization, as well as (Refs. 25,
37, 47–49) for damage quantification). The words probabilis-
tic and/or statistical are used here because these techniques
involve the application of probabilistic/statistical modelling
approaches (such as Gaussian Mixture Models (Ref. 19)), and
statistical inference techniques (such as statistical hypothesis
tests (Ref. 43)). In general, these techniques lead to an accu-
rate and robust damage quantification process (same can be
said for detection). However, they may involve complicated

steps (such as the case of Gaussian mixture models (Ref. 19))
or require many data sets for model training and building pro-
cesses (such as the case of the matching pursuit decomposi-
tion (Ref. 30) or Bayesian updating (Ref. 48)).

In this work, a novel, unified probabilistic framework for dam-
age detection and quantification is proposed within active-
sensing acousto-ultrasound SHM and applied to two experi-
mental test cases related to rotorcraft structural components.
Stochastic, non-parametric time series (NP-TS) representa-
tions are proposed for detecting damage, as well as identi-
fying the wave propagation paths (within a “hotspot” config-
uration) that are most sensitive to damage and enable robust
damage detection. Then, these damage-information-rich sig-
nal paths are used to enable the statistical learning phase of the
proposed unified damage detection and quantification frame-
work via the use of Bayesian Gaussian Process Regression
or Classification Models (GPRMs or GPCMs). The proposed
framework is applied to a stiffened aluminum (Al) panel and a
carbon fiber-reinforced polymer (CFRP) coupon, both repre-
senting parts of rotorcraft fuselage, within an active-sensing,
local “hotspot” monitoring configuration. Experimental re-
sults are compared with one state-of-the-art DI formulation as
proposed by Janapati et al. (Ref. 3) and Qiu et al. (Ref. 19).
The novel aspects of this work include:

(a) The introduction of a unified probabilistic SHM frame-
work for damage detection and quantification, and its ex-
perimental demonstration to both metallic and composite
coupons representing rotorcraft structural components.

(b) The development of a novel straight-forward damage de-
tection tool in active-sensing guided-wave SHM with the
advantage of enhanced detection capabilities over con-
ventional DI-based approaches, without sacrificing sim-
plicity.

(c) The integration of the NP-TS model results into GPRMs
and GPCMs for enhanced accuracy and robustness in
damage quantification and classification, respectively.

(d) The extraction of statistical confidence intervals for dam-
age detection and quantification from the response sig-
nals of piezoelectric sensors directly, negating the re-
quirement of user-defined thresholds.

THE UNIFIED STATISTICAL DAMAGE
DETECTION AND QUANTIFICATION

FRAMEWORK

A unified probabilistic SHM framework is proposed inte-
grating stochastic NP-TS representations with GPRMs and
GPCMs for damage detection, quantification and classifica-
tion. Figure 1 shows the flow chart of the proposed work-
frame. As shown, in the “training phase,” training data is
first acquired, and all signals from all actuator-sensor paths
are fed into NP-TS models. These models perform the de-
tection, as well as provide certain data features that are fed
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Fig. 1. The proposed unified framework integrating NP-TS representations with GPRMs and GPCMs for probabilistic
damage detection and quantification in active-sensing guided-wave SHM.

into a statistical path selection algorithm to classify paths
into damage-intersecting and non-intersecting according to
properly-selected statistical quantities (?-values). After that,
the DIs and the NP-TS representations of only those dam-
age intersecting paths are used to train GPRMs or GPCMs
for damage quantification.

Then, in the “estimation phase,” inspection data is col-
lected and the DIs and/or the NP representations of the se-
lected signal paths are extracted and fed into the trained
GPRMs/GPCMs, from which the most probable damage size
is extracted, thus fulfilling both the detection and quantifica-
tion within a unified probabilistic SHM framework. In a re-
cent study by the authors (Ref. 43), the statistical path selec-
tion framework has been demonstrated on an Al plate and the
stiffened Al panel used herein, and thus, although the theoret-
ical background of statistical path selection will be presented,
results of applying the framework will not be presented here
for the sake of brevity. In addition, integrating the DIs of the
selected signal paths for damage quantification has also been
previously presented by the authors (Ref. 25), so in this study,
results will be presented only for the integration between NP-
TS and GPR/GPC models.

Statistical Damage Detection

Kopsaftopoulos and co-workers (Refs. 50–52) have previ-
ously reported a statistical framework for damage detection
and identification for vibration-based SHM, which was later
expanded by the authors in the context of active-sensing
guided-wave SHM (Ref. 43). For the purpose of damage de-
tection, quantification and localization, this framework can
be laid out as shown in Figure 2 (Refs. 43, 53), where G [C]
and H[C] are the actuation and response signals, respectively.
These signals are indexed with discrete time C, which corre-
sponds to continuous time (C −1))B , where )B is the sampling

time for the recorded data. The subscripts (>, �, �, . . . , and
D) indicate the healthy, damage A, B, ..., and unknown cases,
respectively. The different damage labels (�, �, . . .) can rep-
resent different sizes, types, or locations of damage. For each
structural state, all actuation (-) and response (. ) signals can
be presented as / = (-,. ), with />, /�, /�, . . . , and /D indi-
cating the different states as before.

Figure 2 shows two phases in this framework: a baseline
and an inspection phase. In the latter, the identification and
validation of NP-TS models is carried out for producing a
characteristic quantity &̂ for the healthy (&̂0) and the dif-
ferent predefined damage states (&̂�, &̂�, . . .). In the in-
spection phase, applying the developed NP-TS models for
the unknown state, the quantity (&̂D) is identified for the
system. Damage detection and identification (quantification
and/or localization) can then be carried out by applying bi-
nary statistical hypothesis tests, where the statistical devia-
tion of &̂D from &̂0 (damage detection) and its statistical sim-
ilarity thereof to one of the damaged state quantities: &̂�,
&̂�, . . . (damage identification/classification) is interrogated.
In this study, this framework is only used for damage detec-
tion, while GPRMs/GPCMs are used for damage quantifica-
tion. Finally, it is worth noting that, although binary hypothe-
sis tests are based on the type I (U) and II (V) error probabili-
ties, only the former can be defined for the framework applied
herein (Ref. 54).

The Welch Non-parametric Time Series Representation.
Because of their stochastic nature, NP-TS models have been
extensively utilized in the field of vibration-based SHM
(Refs. 52, 55, 56). Their main advantage lies in the straight-
forward statistical representation of theoretical and experi-
mental estimation uncertainties, which removes the need for
user-defined damage thresholds. In addition, application of
these models requires little-to-no user experience (Refs. 57,
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Fig. 2. Framework for statistical time series methods for structural health monitoring (Refs. 43, 52, 53).

58). Finally, as will be shown herein, NP-TS models can
prove superior to DI-based approaches in following damage
evolution. Some of the most widely-used NP-TS models are
estimators for the Power Spectral Density (PSD) of a sensor
response signal (Refs. 57–59). The term “estimators” is used
here because the signals used in the estimation are finite in na-
ture, making such representations estimators of the true PSD
of a system. In this study, the Welch-based PSD estimator
(also known as the Barttlet-Welch estimator) (Ref. 58, Chap-
ter 4, pp. 76) is used for damage detection. For a time se-
ries signal G [C], the frequency-domain (l) Welch-based PSD
((̂GG (l), or (̂(l)) is based on the averaging of multiple-
windowed periodograms using properly-selected sample win-
dows F [g] with 50% overlap, and is calculated as follows
(Refs. 60, 61) (the hat indicates an estimated quantity):

(̂GG (l) =
1

 !*)

 −1∑
8=0

���) !−1∑
C=0

F [C] · Ĝ [C + 8�] (− 92clC) )
���2 (1)

with

* =
1
!

!−1∑
C=0

F2 [C], Ĝ [C] = G [C] − ̂̀G , # = !+� ( −1) (2)

and # , !,  , �, and ) being the total number of signal sam-
ples, the size of each window, the number of utilized win-
dows, the number of overlapping data points in each window,
and the time period of the signal, respectively. ̂̀G represents
the mean of the time series, and | · | represents the Euclidean
norm. The estimation statistics, that is the mean and variance,
of the Welch PSD can be described as follows:

�{(̂GG (l)} =
1

2c!*
(GG (l) |, (l) |2 (3)

+0A [(̂GG (l)] =
9
16

!

#
(2
GG (l) (4)

where, (l) is the Fourier transform of the window function.
One of the main reasons behind the wide use of the Welch
PSD estimator is that it is asymptotically unbiased and con-
sistent (Ref. 59).

The Multiple-set Z Statistic. As presented in the work of
Kopsaftopoulos and Fassois (Refs. 52, 53), changes in the
Welch-based PSD of time series signals can be indicative
of structural damage. In real-life situations, there would
generally be a sufficiently-large number of data sets for the
healthy/baseline case. In that case, the mean of the multi-
ple Welch PSD estimators of the multiple available signals
can be assumed to approximately follow a normal distribu-
tion (Refs. 52, 53). In this study, we develop a novel damage
detection statistical quantity based on the / statistic developed
by Kopsaftopoulos and Fassois (Refs. 52, 53). The novelty
here stems from the utilization of the mean of the estimators,
instead of the estimators themselves, as well as the use of the
Welch PSD estimator instead of the FRF. Herein, this novel /
statistic is used, for the first time, for analyzing active-sensing
acousto-ultrasound SHM signals. Then, damage detection can
be tackled using the following SHT problem:

�> : �{(> (l)} − (D (l) = 0
(null hypothesis – healthy structure)

�1 : �{(> (l)} − (D (l) ≠ 0
(alternative hypothesis – damaged structure)

(5)

In this formulation, (D (l) represents the PSD of the unknown
structural case. Using the property of mutual-independence
between the time series of the healthy and damage structures,
the PSD estimates for these states would also be mutually-
independent, along with the differences between these esti-
mates (that is � [(̂> (l)] − (̂D (l)). In the latter case, the dis-
tribution of the differences would have a mean equal to the
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difference between the true PSD estimates, and a variance
equalling the sum of both variances (the variance of � [(̂> (l)]
and (̂D (l)). Finally, the null hypothesis can be set up as fol-
lows:

Under �> : �{(̂> (l)} − (̂D (l) ∼ N (0,2f2
> (l))

(null hypothesis – healthy structure)
(6)

Here, f2
> can be estimated from the baseline phase, and can

be assumed to have negligible variability for a large number
of data sets (Refs. 52, 53). The Welch PSD-based / statistic
can be expressed as follows:

/ =
|� {(̂> (l) }−(̂D (l) |√

2f2
> (l)

≤ /1− U
2
(∀l) =⇒ �> is accepted

Else =⇒ �1 is accepted

where /1− U
2

designating the standard Normal distribution’s
1− U

2 critical point.

Reference Damage Index. In this work, a reference state-
of-the-art DI was adopted from the work of Janapati et al.
(Ref. 3). This specific formulation was selected because it is
characterized by high sensitivity to damage-related character-
istics (such as size and orientation) vs other sources of signal
variations (such as material properties). Given a healthy G> [C]
and an unknown GD [C] signal, the formulation of the selected
DI is as follows:

#D =
GD [C]√∑=
C=1 G

2
D [C]

, (7a)

#0 =

∑=
C=1 (G> [C] ·#D)

G> [C] ·
∑=
C=1 G

2
> [C]

(7b)

�� =

=∑
C=1
(#D −#>) (7c)

In equation 7c, #D and #> are normalized unknown- and
baseline-case signals, respectively.

Probabilistic Damage Quantification

As described above, the proposed framework (Figure 1) in-
volves both damage detection and quantification. NP-TS
representations of the response signals of different actuator-
sensor paths are fed into a statistical path selection algo-
rithm, which identifies signal paths as damage-intersecting
or damage-non-intersecting based on statistical quantities.
After that, the NP-TS representations of only the damage-
intersecting paths are used to train GPRMs/GPCMs for
damage size estimation, as shown in Figure 1. As pre-
viously reported (Refs. 25, 43), damage-intersecting paths
carry more information about damage size compared to non-
intersecting paths. Thus, only using these paths in training
GPRMs/GPCMs would greatly decrease the amount of data
sets required for accurate damage quantification. This is is
achieved by using the proposed statistical path selection ap-
proach.

Statistical Path Selection. A different, but similar, algo-
rithm to compute the PSD involves the use of a sliding win-
dow with overlap exceeding 50%, which gives PSD results
that are both frequency- and time-dependant. This algorithm
is the Short-Time Fourier Transform (STFT), and, written in
a form similar to the Welch PSD estimation, it can be applied
as follows:

(̂GG (l,g) =
1

 !*)

 −1∑
8=0
|)
!−1∑
==0

F [=−g]Ĝ [=+8�]4− 92cl=) |2

In this work, the STFT PSD is used as a damage-sensitive
feature to identify which actuator-sensor signal paths inter-
sect damage and which do not. In order to implement this
statistical path selection process, the STFT PSD estimates
are fed into another statistical hypothesis test, namely the
Kolmogorov-Smirnoff (KS) test. The KS test was originally
proposed as a means for measuring the deviation of an em-
pirical distribution from a theoretical one (Refs. 62–64). The
on-sided two-sample version of the KS statistic of the test can
be calculated as follows (Refs. 64, 65):

 (==′ =

√
==′

=+=′ BD?G (� ((̂> (l,g)) −� ((̂D (l,g))) (8)

Here, � indicates the empirical cumulative distribution func-
tion (CDF) of the STFT PSD time samples of the healthy and
the unknown cases being compared having sizes = and =′ (in
this work, = is equal to =′). BD?G (·) indicates the supermum of
the enclosed quantity, and (̂> (l,g) and (̂D (l,g) are the STFT
PSD estimates for the healthy and unknown case, respectively.
In this case, if  (==′ is larger than a critical value  (U defined
by a selected false alarm level U. Tables for the critical val-
ues of  (U can be found in (Ref. 66). An alternative way of
reaching a decision would be to compare the ?-values of hav-
ing  (==′ either being positive or negative (Ref. 65). Some of
the advantages of the two-sample KS test include applicability
to small sample sizes and to samples where the difference in
distributions is small (Ref. 64). Applying the two-sample KS
test in this study, the empirical CDFs of the estimated STFT
PSD values (̂GG (l,g) at different time points g (for each value
of l) for the healthy as well as the unknown test cases are
compared. Then, the ?-value of having the empirical CDF of
the healthy case less than that of the unknown case (that is,
having a negative  (==′) is calculated and compared with the
significance of the test (U). Based on that, a one-sided statis-
tical hypothesis test can be setup as follows:

�> : ?D (l) ≥ U (damage-non-intersecting path)
�1 : ?D (l) < U (damage-intersecting path)

such that ?D is the ?-value of the one-sided two-sample KS
test when the unknown STFT PSD estimate is compared to
the healthy one.

Bayesian Gaussian Process Regression Models. GPRMs
are kernel-based linear regression formulations that have the
ability to model non-linear relationships between observations
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and inputs. In this study, GPRMs are used to model the evo-
lution of the / statistic with frequency and/or damage size as
will be shown later. Given a training data set D containing =
inputs-observation pairs {(x8 ∈ R� , H8 ∈ R, 8 = 1,2,3, . . . , =},
a GPR model can be formulated as follows:

H = 5 (x) + n (9)

such that a GP prior with mean <(x) and kernel : (x,x′)
is placed on the latent function 5 (x), and an independent,
identically-distributed (iid), zero-mean Gaussian prior with
variance f2

= is placed on the noise term n as follows:

5 (x) ∼ GP(<(x), : (x,x′)), n ∼ 883N(0,f2
=) (10)

In this study, <(x) is set to zero, and the squared exponential
kernel function is used for 5 :

: (x,x′) = f2
0 exp(−1

2
(x−x′))Λ−1 (x−x′)) (11)

where f2
0 is the output signal power (variance), and Λ is a

diagonal matrix of the characteristic length scales of each di-
mension (�, i.e each covariate) in the input data set. There
will be a separate length scale for every covariate in the data.
Thus, for a single-input (i.e. � = 1), the entries along the di-
agonal of Λ−1 will be identical.

GPRM training involves optimizing the hyperparameters (\ ≡
f2

0 ,Λ,f
2
=) via Type II Maximum Likelihood (Ref. 67, Chapter

5, pp. 109). In this method, the marginal likelihood (evidence)
of the training observations (outputs) is maximized with re-
spect to the hyperparameters. For computational reasons, its
negative log is minimized instead as follows:

\̂ = argmin
\

{− log ?(y|-, \)} (12a)

− log ?(y|-, \) = − logN(y|0, -- +f2
=I) (12b)

= −1
2

y) ( -- +f2
=I)−1y− 1

2
log | -- +f2

=I| −
=

2
log2c (12c)

One of the most powerful results of the assumptions in
GPRMs is that a joint Gaussian distribution can be assumed
between the training observations y, and the test observa-
tion(s) (to be predicted) at the set of test inputs (x∗) as follows:[

y
H∗

]
=N

[
0,  -- +f

2
=I k-x∗

kx∗- :x∗x∗ +f2
=I

]
(13)

In equation 13,  �� is used as a shorthand for  (�, �), and
I is the identity matrix. The predictive distribution over the
prediction y∗ can then be defined from the properties of mul-
tivariate Gaussian distributions (Ref. 68) as follows:

?(H∗ |x∗, -,y) =N(E{H∗},V{H∗}) (14a)
E{H∗} = kx∗- ( -- +f2

=I)−1 (14b)
V{H∗} = :x∗x∗ −kx∗- ( -- +f2

=I)−1k-x∗ +f2
=) (14c)

Fig. 3. The CFRP coupon used in this study shown here
with 6 weights as simulated damage (largest damage size).
The arrow shows the signal path used in the present work.

Bayesian Gaussian Process Classification Models. In
many SHM real-life problems, classification may be an al-
ternative to regression approach, when SHM metrics are ob-
tained under different damage types and /or damage sizes
that do not evolve in a continuous manner. This is the case
with damages of discrete nature, such as rivet damages (as
presented here), or multi-location impact damage (unlike for
instance cracks which can be modelled using a regression
framework). For these types of problems, we propose the use
of Gaussian Process classification instead of regression mod-
els. Although the processes of training and prediction are very
similar between GPCMs and GPRMs, there exist differences
which stem from the targets (observations) being discrete la-
bels instead of continuous observations (Ref. 67, Chapter 3,
pp. 33). In the binary classification problem, this would first
dictate that the latent function 5 (x) be “squashed” into the
domain of [01] or [−11] (Ref. 67, pp. 39). This can be done
using the logistic function λ( 5 (x)) as follows (Ref. 67, pp.
35):

λ( 5 (x)) = (1− exp(− 5 (x)))−1 = ?(H = +1|x) = 1− ?(H = −1|x)
(15)

With this concept, prediction can take place as follows
(Ref. 67, pp. 40):

?( 5∗ |-,y,x∗) =
∫

?( 5∗ |-,x∗, f)?(f |-,y) (16a)

?(H∗ = +1|-,y,x∗) =
∫
λ( 5∗)?( 5∗ |-,y,x∗) (16b)

In this expression, a shorthand for the latent function 5 (G∗)
and 5 (x) has been introduced as 5∗ and f, respectively. Also,
?(f |-,y) is the posterior over the latent function. The pre-
dictive probability ?(H∗ = +1|-,y,x∗) allows for obtaining
the probability of the test input G∗ falling into the class of
+1. This expression, however, cannot be solved analytically
because the non-Gaussianity of the integrals in equation 16.
Thus, approximate methods are used to solve the integrals
by approximating the non-Gaussian posterior by a Gaussian
one. The method used herein is the expectation maximization
method (Ref. 67, Section 3.6).
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Fig. 4. Response signals from path 4-3 in the CFRP coupon and their corresponding DIs for different damage sizes
(number of weights). (a) and (c) First 100`B. (b) and (d) First 50`B. The red dashed lines indicate the upper 95 %
confidence bound for the healthy DI values, while the red circles indicate the mean of all realizations per damage.

TEST CASE 1: CFRP COUPON

Experimental Setup

In the first test case for the experimental validation and assess-
ment of the proposed framework, a CFRP coupon was used
of dimensions 152.4× 254 mm (6× 10 in) (2.36 mm/0.093
in thick; ACP Composites; 0/90> unidirectional layup with
carbon fiber prepreg). The coupon was fitted with six single-
PZT (Lead Zirconate Titanate) SMART Layers type PZT-5A
(Acellent Technologies, Inc) using Hysol EA 9394 adhesive,
as shown in Figure 3. The PZT-5A sensors have a thickness
of 0.2 mm (0.008 in) and a diameter of 3.175 mm (1/8 in). In
order to simulate a growing matrix crack, up to six three-gram
weights were sequentially attached to the surface of the plate
using tacky tape, as shown in Figure 3.

5-peak tone bursts (5-cycle Hamming-filtered sine waves)
with 90 V peak to peak amplitude and various center frequen-
cies were generated at each sensor and the response signals
at the remaining sensors were collected. Using a sampling
rate of 24 MHz, 20 response signals per structural case were
collected at each sensor using a ScanGenie III data acquisi-
tion system (Acellent Technologies, Inc). Preliminary anal-
ysis was conducted, and a center frequency of 250 kHz was

chosen for the complete analysis presented in this study based
upon the best separation between the first two wave packets
in various signal paths. All analysis presented in this paper
was done in Matlab.1 For the GPRMs, the mean squared error
(MSE) and the residual sum of squares divided by the sample
sum of squares (RSS/SSS) are all reported with respect to the
validation (test) data that was not used in the training phase.

Detection: Results and Discussion

Figure 4 shows the signals received at sensor 3 when sensor
4 was actuated under different damage cases (different num-
bers of attached weights), as well as the evolution of the DI.
This path has been specifically chosen for analysis because it
is damage-intersecting. As mentioned before, using the sta-
tistical path selection framework described in , signal paths
can be identified as damage-intersecting or non-intersecting.
As shown in the figure, be it for the first 50 or 100 `B, the
DIs seem to follow the evolution of damage with all damages
being detected with 95 % confidence, albeit with substantial
overlap over different realizations. This overlap is connected

1Matlab version R2020a, functions pwelch.m (window size: 80-130; nfft:
5000; noverlap: 50%) and spectrogram.m (window size: 400-900; nfft: 960;
noverlap: 95%).

7



Fig. 5. NP-TS model results from path 4-3 in the CFRP coupon for different damage sizes (number of weights). (a) /
Statistic for the first 100`B. (b) / Statistic for the first 50`B. The red dashed lines indicate the upper 95 % confidence
bound for the healthy / statistics, and the colored circles indicate the mean / value of all realizations per damage. Also
shown are ROC plots comparing / statistics and DIs with respect to detecting the first damage size (1 weight) for (a) the
first 100`B, and the (d) first 50`B.

to different sources of uncertainty affecting the different re-
alizations/cross sections of the signals in a lab environment.
Indeed, in a rotorcraft setting, this overlap would be much
bigger because of the varying operational and environmental
conditions, as well as the various sources of uncertainty. Al-
though the same can be said for the challenges faced by NP-
TS models in detecting damage, NP-TS models are based on
statistical distributions, and thus they inherently allow for the
extraction of estimation uncertainties along with experimental
uncertainties. In addition, NP-TS models are defined in the
frequency domain, which, as mentioned in the Introduction,
offers more accuracy in detection, as well as more flexibility
due to the wide spectrum of frequencies at which the analysis
can be done.

Figure 5 panels a and b show the / statistics corresponding
to the signals in Figure 4. As shown, although overlap does
exist between the different damage cases, especially for small
damage sizes, comparing these results with the DIs, it can be
observed that there are frequencies where many realizations
for a given damage case are not overlapping with those of
other damage cases. This can be observed by noting the po-
sition of the mean / values, and is the case especially high
frequencies in the 50`B / statistic. Damage case-separation

aside, because the main purpose of this study is comparing de-
tection performances, ROC plots were generated for the first
damage size only (one attached weight) as shown in Figure
5 panels c and d. For the first 100`B of the signal, both de-
tection metrics show perfect damage detection, while the /
statistic shows more sensitivity in damage detection when an-
alyzing the effect of one weight on the first 50`B of the sig-
nals. This, alongside better damage case-separation at specific
frequencies, shows that the / statistic is a promising damage
detection metric compared to state-of-the-art conventional DI-
based methods.

Quantification: Results and Discussion

As mentioned above, the problem of damage quantification is
tackled by training GPRMs based on the generated / statistics
for the damage-intersecting paths, and then using the GPRMs
for prediction. In this format, the trained GPRMs would be
capable of predicting / statistic values when given frequency
and/or damage points/cases. However, because in real-life sit-
uations, test data would correspond to the SHM metric values
themselves (the / statistic in this case) instead of frequency
or structural states, it would be more interesting to identify
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Fig. 6. GPRMs trained by / statistic from the first 50`B of signal path 4-3 in the CFRP coupon. (a) GPRM modelling
the evolution of the / statistic with frequency for the biggest damage size (6 weights). (b) Prediction probability showing
the predicted frequencies by this GPRM vs true frequencies. The scale bar indicates the probability, and red circles
indicate the highest probability points/actual frequency. (c) GPRM modelling the evolution of the / statistic with respect
to damage size at a frequency of 792 kHz. (d) Prediction probability versus damage size based on the GPRM at an
indicative test point (true and predicted states are shown as dashed vertical lines).

the frequency and/or damage size of the incoming test points
using the trained GPRMs, not vice versa. This can be applied
by calculating the predictive confidence intervals at the test /
statistic values, and finally calculating the probability that a
point sampled from the predictive distribution of each set of
states (frequency and/or damage size) would fall within the
calculated confidence intervals. The state(s) that has(ve) the
highest probability would be identified as the state(s) corre-
sponding to the observed test / statistic.

Having said that, since the / statistics are calculated at spe-
cific frequencies, the frequency is never an unknown that
needs to be predicted, unlike damage size. However, because
/ statistics do change values with frequency, there exists spe-
cific frequency(ies), that have to be determined, at which /-
trained GPRMs would predict damage size most accurately.
Thus, there are two methods by which this prediction prob-
lem can be approached. The first approach includes training
GPRMs that model the evolution of the / statistic with both
frequency and damage at the same time, and then extract-
ing prediction probabilities for both. This approach carries
the inherent assumption that the “most-sensitive frequency”
is unknown, and similar models were applied by the authors

recently for aerodynamic state prediction over aircraft wings
(Ref. 69). The second approach would be to generate GPRMs
that only model the evolution of the / statistic with frequency
for each damage size. Then, using the frequency prediction
paradigm described in the last paragraph, the frequency pre-
diction capability of these damage-specific, /-trained GPRMs
is studied. From this, the frequency(ies) at which the damage-
specific GPRMs show perfect frequency prediction across all
damages (across multiple damage-specific GPRMs), that is,
the “most-sensitive frequency(ies)” would be deemed as the
frequency(ies) of analysis for damage quantification. Finally,
the evolution of the / statistic with damage size at one of
these selected frequencies is modelled using GPRMs, from
which damage size can be predicted. This second approach is
the one presented here.

Figure 6a shows one such damage-specific, /-trained GPRM
that was trained using 1500 training points selected randomly
from 60000 / statistic values, but evenly-distributed over the
frequency axis (MSE: 0.46, RSS/SSS = 0.76%). As shown,
the model almost perfectly captures the evolution of the /
statistic with frequency, as well as the variability in the avail-
able data sets (see the yellow circles). Figure 6b shows the
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Fig. 7. The stiffened Al panel used in this study. The red
circle indicates the rivet (rivet A) were damage was simu-
lated, and the yellow arrow indicates the path analyzed in
this study.
probability of the predicted frequencies vs the true frequencies
of analysis. As shown by the circles, that indicate the location
of the maximum probabilities per actual frequency, for almost
the full frequency spectrum, the actual frequency is accurately
predicted. Following this, similar GPRMs were trained for
each of the other damage cases, and the plot shown in Fig-
ure 6b was generated for each damage case (not shown here).
Observing all the similar damage-specific probability plots, a
frequency of 792 kHz was chosen as the frequency at which
damage quantification will be applied. Figure 6c shows the
GPRM trained using all / statistic values for all damage sizes
at a frequency of 792 kHz (MSE: 0.42, RSS/SSS = 0.99%).
As shown, the model nicely follows the evolution of damage
in the CFRP coupon, yet still shows apparent overlap between
the / values at different damage sizes. However, unlike in the
case of the DIs, where this overlap would directly affect dam-
age quantification, the trained GPRM showed perfect dam-
age size prediction for all / test points that were fed into it.
One example is shown in Figure 6d, where the test / statistic
point corresponds to a damage size of 4 weights. The results
presented in this and the previous section show the superior-
ity of the proposed unified framework in tackling damage de-
tection and quantification compared to conventional DI-based
approaches. It is worth noting here that, because the signal
paths that are used in this analysis are statistically selected ac-
cording to the framework presented in , the amount of data
sets needed for training accurate GPRMs is greatly decreased
compared to other quantification methods presented in the lit-
erature.

TEST CASE 2: STIFFENED AL PANEL
Experimental Setup

An 6061 Al panel having dimensions 609.6 × 609.6 mm
(24× 24 in) and being 0.81 mm (0.032 in) thick, was stiff-
ened with three 25.4×25.4 mm (1×1 in) stringers to simulate

a sub-scale fuselage component. Using Hysol EA 9394 adhe-
sive, one 8-sensor SMART layer (Acellent Technologies, Inc)
was installed at each side of one of the stringers on the panel,
as shown in Figure 7. In order to simulate damage, rivet A
(indicated in the figure) was subjected to three damage levels:
the bottom of the rivet was completely filed (damage level 1),
then rivet A was partially popped out using a hammer (dam-
age level 2), and finally completely removed (damage level
3). Actuation and response signal collection was done in the
same manner as with the CFRP plate.

Detection: Results and Discussion

Figure 8 shows the signals and DI values corresponding to
signal path 4-14 under different damage levels. Just like the
case of the CFRP coupon, although all damages are detected,
there exists substantial overlap between the different DI val-
ues across the damage levels, more so for the first 100`B com-
pared to the first 50`B only, in which the DI values show a
more uniform evolution with damage.

Figure 9 panels a and b show the / statistic results for the first
100 and 50`B, while panels c and d show the corresponding
ROC plots for the first damage level. It can be directly ob-
served from panel a that the / statistics also show a high level
of overlap across the different damage levels. However, be-
cause all damages are detected under a wide range of alpha
(false alarm) levels, the ROC plot in Figure 9c shows perfect
detection for the first damage by the / statistic, and also an
almost perfect detection by the DI metric. Turning to Fig-
ure 9 panels b and d, one can observe the slightly-enhanced
separation between the damage-specific / statistic curves. In
addition, the / statistic shows superior detection capability
once more over the DI for the first damage level, as shown in
panel d of Figure 9.

Quantification: Results and Discussion

Unlike the case of the CFRP coupon, where the attached
weights resembled a continuous growing crack, damage lev-
els in the Al panel correspond to discrete classes of damage.
Thus, the problem of quantification is addressed from a classi-
fication point of view, instead of regression. As such, in order
to demonstrate the capability of /-trained GP classification
models, binary (that is, 2-class) models were trained using
80 single-frequency / statistic values, in which the models
are capable of classifying between two damage states/levels
only. These models entertain simplicity and low computa-
tional burden, and can be used for comparing the healthy base-
line or a known damage case with unknown test data. Fig-
ure 10 shows the first case, where the predictive probabili-
ties are plotted against the values of the / statistic used for
prediction/classification at a frequency of 846 kHz for each
case. As shown, the prediction probabilities in each case fol-
low the validation points (dashed lines) not used in training
very well. One advantage of this GP classification approach
is the direct extraction of prediction probabilities without the
need for any further computations, as in the case with damage
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Fig. 8. Response signals from path 4-14 in the Al panel and their corresponding DIs for different damage levels. (a) and
(c) present results for the first 100`B of the signal. (b) and (d) present results for the first 50`B of the signal. The red
dashed lines indicate the upper 95 % confidence bound for the healthy DI values, while the red circles indicate the mean
of all realizations per damage.

size prediction in GPRMs that was presented in the previous
test case. In addition, the same probabilities can be extracted
when comparing one of the known damage levels with the test
data, which would add more insight into the most probable
damage level of the test data. Finally, with an added compu-
tational burden, multi-label GP classification can be applied
here to calculate the predictive probabilities corresponding to
all damage levels simultaneously.

CONCLUSIONS

In this study, a unified probabilistic active-sensing SHM
framework for damage detection and quantification was put
forward using stochastic non-parametric time series and
Bayesian Gaussian Process regression and classification mod-
els. The application of the framework was demonstrated
on two representative test cases corresponding to modern-
day rotorcraft materials/components. After selecting the most
damage-informative signal paths to be analyzed based on the
postulated statistical path selection method, a novel damage
sensitive / statistic was proposed and applied to damage de-
tection showing superiority over conventional damage indices
in both test cases. Then, these statistics were used for training
GP regression and classification models for the CFRP coupon

and stiffened Al panel, respectively, for tackling the damage
quantification and classificaiton tasks. Results showed excel-
lent damage size prediction in the case of the CFRP coupon,
and accurate damage level classification in the case of the Al
stiffened panel. The presented experimental assessment and
validation results indicated the potential advantages of using
GP models for damage quantification and classification com-
pared to conventional deterministic and arbitrary-threshold
DI-based approaches. In conclusion, the proposed unified
probabilistic active-sensing SHM framework exhibited accu-
rate and robust damage detection and quantification perfor-
mance in a data-efficient manner given the use of the proposed
statistical path selection algorithm, thus outperforming alter-
native to conventional DI-based SHM metrics.

Author contact: Ahmad Amer, amera2@rpi.edu; Fotis Kop-
saftopoulos, kopsaf@rpi.edu
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Fig. 9. NP-TS model results from path 4-14 in the Al panel for different damage levels. (a) / Statistic for the first 100`B.
(b) / Statistic for the first 50`B. The red dashed lines indicate the upper 95 % confidence bound for the healthy /
statistics, and the colored circles indicate the mean / value of all realizations per damage. Also shown are the ROC
plots comparing / statistics and DIs with respect to detecting the first damage size (1 weight) for (a) the first 100`B of
the signal, and (d) first 50`B of the signal.

Fig. 10. Predictive probabilities from binary GP classification models trained by the / statistics for a frequency of 846
kHz applied to the first 50`B of the response signal from path 4-14 in the Al panel. (a) Healthy vs Damage Level 1. (b)
Healthy vs Damage Level 2. (c) Healthy vs Damage Level 3. The colored dashed lines correspond to validation (test)
points that were not used in training the models for each structural state.
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