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ABSTRACT
In this work, a statistical time series method that is capable of effective multicopter rotor fault detection, identifica-
tion, and quantification within a unified stochastic framework is introduced. The proposed framework is based on the
functional model based method for fault magnitude estimation tackled within the context of statistical time series ap-
proaches. Estimator uncertainties are taken into account, and confidence intervals are provided for the fault magnitude
of multicopter rotors. The framework employs functionally pooled (FP) models which are characterized by parame-
ters that depend on the fault magnitude, as well as on proper statistical estimation and decision-making schemes. The
validation and assessment is assessed via a proof-of-concept application to a hexacopter flying forward with a constant
velocity under turbulence. The fault scenarios considered consist of the front and side rotor degradation ranging from
healthy to complete failure with 20% fault increments. The method is shown to achieve fast fault detection, accurate
identification, and precise magnitude estimation based on even a single measured signal obtained from aircraft sensors
during flight. Furthermore, fault quantification is addressed via the use of both local ( boom acceleration) and global
(IMU) sensors, with the signals collected from the boom supporting the identified faulty rotor proven to achieve better
performance than the global signals, yet with a shorter signal length.

NOTATION

α : Type I risk level
ρ : Normalized Autocorrelation
τ : Lag
θ : Model parameter vector
χ2 : Chi-square distribution
σ2 : Residual variance
N : Gaussian distribution
E{·} : Expected value
CRLB : Cramér-Rao Lower Bound
IMU : Inertial Measurement Unit
PSD : Power Spectral Density
BIC : Bayesian Information Criterion
RSS : Residual Sum of Squares
ACF : Auto-Covariance Function
iid : identically independently distributed
OLS : Original Least Squares
SSS : Signal Sum of Squares
AR : Scalar AutoRegressive model
FP : Functionally Pooled
WLS : Weighted Least Squares
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INTRODUCTION

Urban air mobility (UAM), enabled by autonomous elec-
tric VTOL (eVTOL) aircraft is set to revolutionize urban
transport. A NASA sponsored study concluded UAM is
a viable option and assessed its available market value
at $500B (Ref. 1). But, the operational success of on-
demand aviation service for mass transportation requires
absolute safety and reliability. The preliminary safety tar-
get of UAM utilizing the airspace over dense urban envi-
ronments has been established to be twice as safe as driv-
ing by Uber Elevate (Ref. 2), with the expected improve-
ment toward airline aviation levels of safety through inno-
vation with full autonomy and large amounts of data from
real-world operations after the first generation VTOL air-
craft are in production. Therefore, the current interest is
towards real-time system-level awareness and safety as-
surance in UAM aircraft utilizing in-flight data streams.
The goal of this line of work is the development of a
data-driven and probabilistic rotor fault diagnosis frame-
work in multicopters which will provide online informa-
tion about rotor faults, critical for control reallocation or
vehicle reconfiguration to complete the flight safely.

Multicopters have been identified as a potential platform
for future UAM aircraft development due to their rotor
redundancy, design flexibility, ability to integrate dis-
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tributed electric propulsion, and their superior fault ro-
bustness and compensation capabilities. These are com-
plex systems that exhibit strong non-linear dynamic cou-
pling between rotors, structural components, fuselage,
and control inputs, as well as time-varying and cyclo-
stationary behavior and pose significant system model-
ing and identification challenges when compared to fixed-
wing aircraft. These issues, as well as potential solu-
tions, have been explored in the recent literature. Fault-
tolerant control for multi-rotors (Refs. 3, 4), as well as
various fault diagnosis methods for rotorcraft have been
proposed (Refs. 5–10). However, the methods discussed
in the above papers suffer from the requirement of analyt-
ical modeling, knowledge of system properties like mass,
rotor inertia, etc., and the use of arbitrary deterministic
thresholds for tackling rotor FDI. These limitations are
collectively addressed in this work via the use of stochas-
tic time series representations of the multicopter dynam-
ics based on flight signals without requiring knowledge of
the system properties. Also, the rotor fault diagnosis ap-
proaches will be developed within a statistical framework
that inherently accounts for operating and environmen-
tal uncertainty through properly defined statistical thresh-
olds under predetermined confidence levels. Towards this
end, statistical time series methods have been explored
thoroughly in this work.

Statistical time series methods have been used to detect
various fault types in aircraft systems due to their simplic-
ity, efficient handling of uncertainties, no requirement of
physics-based models, and applicability to different oper-
ating conditions (Refs. 11–14). Reliable fault detection,
identification, and isolation have been achieved in fixed-
wing aircraft under unknown external disturbances, vari-
ous maneuvering settings, and fault scenarios by model-
ing relationships among aircraft attitude data and pilot in-
puts via stochastic Time-dependent Functionally Pooled
Non-linear AutoRegressive with Exogenous excitation
(TFP-NARX) (Ref. 15) and Pooled Non-Linear AutoRe-
gressive Moving Average with eXogenous excitation (P-
NARMAX) (Ref. 16) representations. Kopsaftopoulos
and Fassois achieved statistical damage localization and
estimation by formulation of Vector-dependent Function-
ally Pooled ARX (VFP-ARX) models identified with
vibration-based data pooled from different damage sizes
and locations and uncertainty. This constitutes a “global”
model of the structure, whose parameters are function-
ally dependent on the operating variables (Refs. 17, 18).
This identification framework incorporates parsimonious
VFP models that can fully account for cross correlations
among the operating conditions, perform functional pool-
ing for the simultaneous treatment of all data records, and
achieve statistically optimal parameter estimation based
on Least Squares (LS) and Maximum Likelihood (ML)
schemes. Previously, Dutta et al. achieved fast and

accurate online rotor fault detection and identification
viaa novel application of statistical time-series methods
to multicopters flying forward under different turbulence
levels and uncertainty as well as varying forward veloc-
ity and gross weight in Refs. 19, 20. However, litera-
ture pertaining to actuator fault quantification is scarce.
This information obtained online can facilitate switch-
ing over to a more optimal control scheme and planning
alternative trajectories with limited control authority de-
pending on the fault severity. Therefore, to fill this re-
search gap an innovative time-series assisted neural net-
work with improved explainability was proposed. Its ex-
cellent FDI performance with regard to determining three
discrete fault levels (mild, caution, and urgent) in addition
to simultaneous detection and classification was demon-
strated in Refs.21, 22.
The objective of this paper is the introduction, assess-
ment, and proof-of-concept study of a unified statistical
framework for rotor fault detection, identification, and
continuous quantification in multicopters flying forward
under external disturbances and uncertainty. Functionally
pooled (FP) model-based methods used for vibration-
based structural health monitoring, provide an integrated
framework for damage detection, localization, and quan-
tification. This family of methods allows for consid-
eration of the damage magnitude in a continuous fash-
ion (Ref. 23). The current study investigates a novel ap-
plication of the above methods in the context of proba-
bilistic fault diagnosis on a hexacopter using sensor data
(time-series signals). The cornerstone of the proposed
framework lies in the stochastic time-series representa-
tion of the aircraft dynamics via FP stochastic models
that can account different types and magnitude of rotor
degradation, turbulence, and uncertainty. These models
can subsequently enable online fault detection, identifi-
cation, and quantification via statistical decision-making
schemes under predetermined confidence levels (type I
error probabilities, i.e., false alarms).

HEXACOPTER MODEL AND DATA
GENERATION

Physics-Based Modeling of Multicopter System

A flight simulation model has been developed for a reg-
ular hexacopter (Fig. 1) using summation of forces and
moments to calculate aircraft accelerations. This model
is used as the source of simulated data under varying op-
erating and environmental conditions, as well as different
fault types. Rotor loads are calculated using Blade El-
ement Theory coupled with a 3×4 Peters-He finite state
dynamic wake model (Ref. 24). This model allows for the
simulation of abrupt rotor failure by ignoring the failed
rotor inflow states and setting the output rotor forces and
moments to zero.
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Figure 1: Schematic representation of a regular hexa-
copter

A feedback controller is implemented on the nonlinear
model to stabilize the aircraft altitude and attitudes, as
well as track desired trajectories written in terms of the
aircraft velocities. This controller is designed at multiple
trim points, with gain scheduling between these points
to improve performance throughout the flight envelope.
The control architecture is detailed in Ref. 3. This control
design has been demonstrated to perform well even in the
event of rotor 1, 2 or 6 failure, with no adaptation in the
control laws themselves.

The 12 rigid body states are defined in Eq. 1.

x =
{

X Y Z φ θ ψ u v w p q r
}T

(1)

The input vector is comprised of the first four indepen-
dent multirotor controls for collective, roll, pitch and yaw
and is defined in Eq. 2:

u =
{

Ω0 ΩR ΩP ΩY
}T (2)

The booms of the hexacopter are modeled as one-
dimensional, Euler-Bernoulli beams, with an added tip
mass and loading, and are coupled to the rigid body mo-
tion of the vehicle. The positive bending deflections in
the in-plane and out-of plane of the hub are illustrated in
Fig. 2. Torsion is neglected. The beam equations are dis-
cretized in space using the Ritz method with 2 modes in
direction, as given in Eq. 3), with polynomial shape func-
tions, φ that satisfy the geometric boundary conditions
given by Eq. 4. To facilitate the inversion of the mass ma-
trix that arises from this discretization, these polynomials
are chosen to be orthogonal. The modes are obtained via
eigen-analysis of the beam in a vacuum.

v =
2

∑
i=1

ηvi(t)φvi(l)

w =
2

∑
i=1

ηwi(t)φwi(l)

(3)

Figure 2: Flexible boom deformation

where, η represents the modal deformations. l is the non-
dimensional boom coordinate, representing the distance
of a point on the boom from its root normalized by the
boom length. It ranges from 0 to 1, denoting the boom
root and boom tip, respectively. The geometric boundary
conditions are given by:

w(0) = w′(0) = 0
v(0) = v′(0) = 0

(4)

The 8 flexible states for each boom are defined as follows:

x =
{

ηw1 ηw2 ηv1 ηv2 η̇w1 η̇w2 η̇v1 η̇v2

}T

(5)

In the above equations, ‘ ′ ’ and ‘ ˙ ’ imply
d
dl

and
d
dt

,
respectively.

Data Generation

A continuous Dryden wind turbulence model (Ref. 25)
has been implemented in the flight simulation model. The
Dryden model is dependent on altitude, length scale, and
turbulence intensity and outputs the linear and angular ve-
locity components of continuous turbulence as spatially
varying stochastic signals. The proper combination of
these parameters determines the fit of the signals to ob-
served turbulence. In this system, altitude is taken as 5 m
(16.4 ft) and the length scale as the hub-to-hub distance
of the hexacopter, which is 0.6096 m (2 ft). The data sets
are generated through a series of simulations for different
fault types and magnitude under severe of turbulence for
the aircraft flying at 5 m/s and having a gross weight of
2 kg. Note that the rotor failures addressed in this paper
are: front rotor (rotor 1) and the right-side rotor (rotor
2)(See Fig. 1). Rotor degradation has been replicated by
reducing the commanded speed of that particular rotor by
a multiplier ranging from 0 to 1.

The rotor fault diagnosis is based on output signals
recorded from simulations at a sampling frequency, Fs =
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Figure 3: General Workframe of unified statistical time series framework for rotor fault detection, identification, and
quantification.

Table 1: Data

Rotor Type Degradation levels (%)
Rotor 1 0,10,20, . . . ,100
Rotor 2 0,10,20, . . . ,100
Signal length: 60 s, Sampling frequency Fs: 10 kHz
For rotor degradation signals, failure happens at 10 s
Degradation % 0: healthy, 100: complete failure
Forward velocity: 5 m/s, Gross weight: 2 kg
Turbulence level: Severe

10 kHz, to capture the flexible boom natural frequencies.
In this study, the output signals considered are of two
types: local and global sensor readings. The global sen-
sor readings are the signals obtained from the aircraft In-
ertial Measurement Unit (IMU) located at the hub, which
measures the aircraft accelerations and the attitude rates.
The local sensor readings are obtained from the strain
gauges or accelerometers placed at the individual rotor
booms. The sensor signals are calculated using the air-
craft states obtained from the flight simulation (See Ap-
pendix A). Data at 0, 10, 20,...,100 % degradation of ro-
tor 1 and 2 at forward velocity of 5 m/s and 2 kg gross
weight were generated. Degradation of 0 % and 100 %
implies healthy flight and complete rotor failure, respec-
tively. Data at 0, 20, 40, 60, 80, and 100 were used as the
training data for model identification and the subsequent
development of the residual-based methods. The rest of
the data sets were reserved as test data for validating the
models and methods under “unmodelled” (not used in
baseline modeling) operating conditions, like fault mag-
nitude 10, 30, 50, 70, and 90 % of rotor 1 and 2.

FAULT DETECTION, IDENTIFICATION
AND QUANTIFICATION FRAMEWORK

Let Zo be signals that designate the aircraft under consid-
eration in its healthy state, and Z1,Z2 and Z6 the aircraft
under fault of Rotor 1, and 2. Zu designates the unknown

(to be determined) state of the aircraft. Statistical learning
methods explored in this study are based on discretized
aircraft states signals y[t]1 only (for t = 1,2, . . . ,N). N de-
notes the number of samples and the conversion from dis-
crete normalized time to analog time is based on (t−1)Ts,
with Ts being the sampling period. The signals are repre-
sented by Z and subscript (o,1,2,u) is used to denote the
corresponding state of the aircraft that produced the sig-
nals. The signals generated from the simulation are ana-
lyzed by non-parametric followed by parametric statisti-
cal methods and proper models are fitted and validated.

The unified statistical framework for multicopter rotor
fault detection, identification, and subsequent quantifica-
tion is depicted in Fig. 3. Here, the idea is to construct
one FP model for each of the rotors/ fault types (V = 1,2)
in the baseline phase which will include rotor degrada-
tion as the functional variable, ranging from healthy air-
craft to complete rotor failure. Therefore, operating state
vector, k will contain the extent of rotor degradation (ki).
Such models are trained with signals Z1,Z2 and denoted
by M1(k),M2(k), respectively. The aim is to estimate the
rotor degradation from the current signals in the online
phase and enable rotor fault quantification post rotor FDI
as illustrated in Fig. 3. The rotor fault type models are
re-parameterized with all possible values of rotor degra-
dation and the current signals are filtered through them.
The value of fault magnitude that results in minimum er-
ror is chosen as the estimated value of rotor degradation,
k̂. Statistical hypothesis tests are constructed to ascertain
whether k̂ = 0 for all rotor FP models, ensuring that the
aircraft is healthy. A fault is detected if any k̂ 6= 0, and the
models are re-parameterized with their corresponding es-
timate of rotor degradation. Fault identification is based
on the fact that the correct rotor model will yield white
(serially uncorrelated) residuals for its corresponding es-

1A functional argument in parentheses designates function of a real
variable; for instance x(t) is a function of analog time t ∈ R. A func-
tional argument in brackets designates function of an integer variable;
for instance x[t] is a function of normalized discrete time (t = 1,2, . . .).
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timate of k̂. Once the fault is identified, that rotor model
is used for interval estimation of the rotor fault magni-
tude. The details of model identification, residual-based
inverse optimization techniques to estimate the unknown
rotor degradation, and its interval estimate under prede-
termined confidence levels (type I and II error probabil-
ities, i.e. false alarm and missed faults) are discussed in
the following sections.

Baseline modeling of the aircraft

Statistical time-series methods employ stochastic mod-
els, identified on the basis of available random signal(s)
obtained from a system under operational and environ-
mental variability, that describe their time evolution and
capture the corresponding system dynamics (input-output
relationship from data). Besides no requirement of any
physical knowledge of the system, these models are also
capable of handling disturbances and uncertainty, which
makes them attractive for the current application to fault
diagnosis under external disturbances and unexpected
faults. In the present scenario, response-only models are
explored since the signals were recorded under ambient
excitation due to turbulence.

Non-Parametric Identification

As a first step of the analysis, the non-parametric iden-
tification of the collected signals is based on the Welch-
based power spectral density (PSD) estimate. The dis-
crete Fourier transform of the signal of i-th window is
given by:

Y (i)
L [ jω] =

1√
L

L−1

∑
t=0

y[t] ·w[t] · e− j2πkt/N (6)

where L denotes the length of the window (w), and ω

the frequency. Then, the Welch estimate of the PSD of a
discrete-time signal is defined as follows:

Ŝyy(ω) =
1
K

K

∑
i=1

Y (i)
L [ jω] ·Y (i)

L [− jω] (7)

where K denotes the number of windows the signal is
divided into. The PSD provides a description of the vari-
ation in the signal’s power versus the frequency. It can
provide a preliminary idea on the dynamic content of the
signal.

Parametric Identification via Stochastic FP Models

The identification of a Functionally Pooled AutoRegres-
sive (FP-AR) models involves consideration of all rotor

degradation levels. The data is generated under the dif-
ferent rotor fault magnitudes covering the required range
and represented as follows:

yk[t] with t = 1,2, ...,N;

k ∈
[
k1,k2, . . . ,kK1

]
;

(8)

with yk[t] being the univariate response at an operating
condition (rotor state) ki.

The FP-AR(na)pa model structure is of the following
form:

yk[t] =
na

∑
i=1

ai(k) · yk[t− i]+ ek[t]

ek[t]∼ iid N (0,σ2
e (k)), k ∈ R1

ai(k) =
pa

∑
j=1

ai, j ·G j(k)

E{ekm [t]·ekn [t− τ]}= γe[km,kn] ·δ [τ]

(9)

where na designates the AutoRegressive (AR) order, ek[t]
the model’s residual (one-step-ahead prediction error) se-
quence, that is a white (serially uncorrelated) zero mean
sequence with variance σ2

e (k).This sequence should be
serially uncorrelated but potentially cross-correlated with
its counterparts corresponding to different simulations
(different k’s). The symbol E{·} designates statistical
expectation, δ [τ] the Kronecker delta (equal to unity for
τ = 0 and equal to zero for τ 6= 0) , N (·, ·) Gaussian
distribution with the indicated mean and variance, and
iid stands for identically independently distributed. The
AR parameters ai(k) are modeled as explicit functions of
the variable k (which contains the fault magnitude infor-
mation) by belonging to pa-dimensional functional sub-
space spanned by the mutually independent basis func-
tions, referred to as the functional basis:

F 〈ai(k)〉, [G1(k) G2(k) . . .Gpa(k)] (10)

The functional basis consists of univariate orthogonal
polynomials of increasing order. In this work, Cheby-
shev type II polynomials are used as the functional basis
and these are described in detail in Appendix B. The con-
stants ai, j designate the AR coefficients of projection onto
the functional basis. The identification of such paramet-
ric time series models is comprised of two main tasks:
parameter estimation and model order selection.

The FP-AR model is parameterized in terms of the pa-
rameter vector to be estimated2 from the measured sig-
nals:

θ̂ ,
[
a1,1 a1,2 . . . ana,pa

]
(11)

2A hat designates estimator/estimate of the indicated quantity; for
instance, σ̂ is an estimator/estimate of σ.
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and can be written in linear regression form as:

yk[t] =
[
ϕ

T
k [t]⊗GT (k)

]
·θ + ek[t]

yk[t] = φ
T
k [t] ·θ + ek[t]

where:

ϕk[t],
[
yk[t−1] . . .yk[t−na]

]T
na×1

G(k),
[
G1(k) . . .Gpa(k)

]T
pa×1

θ ,
[
a1,1 . . .ana,pa

]T
(na×pa)×1

(12)

Pooling together the expressions of the FP-AR
model corresponding to all the operating parame-
ters k (k1,k2, . . . ,kK1) considered in the simulation
yields:  yk1 [t]

...
ykK1

[t]

=

 φ T
k1
[t]

...
φ T

kK1
[t]

 ·θ+
 ek1 [t]

...
ekK1

[t]


=⇒ y[t] =Φ[t] ·θ+ e[t]

(13)

Substituting the data for t = 1,2, ...,N results in the fol-
lowing expression:

y =Φ ·θ+ e
where :

y ,

y[1]
...

y[N]

 ; Φ,

Φ[1]
...

Φ[N]

 ; e ,

e[1]
...

e[N]

 (14)

Notice that despite its resemblance to standard regres-
sion, this expression includes a rich structure of inter-
dependencies among the different variables and simu-
lations, which need to be carefully taken into account.
Furthermore, the term “functional pooling” signifies the
functional dependence of each equation on the operating
parameter k (indicating the rotor state). Using the above
linear regression framework, the simplest approach for
estimating the projection coefficient vector θ is based on
minimization of the ordinary least squares (OLS) crite-
rion JOLS := 1

N ∑
N
t=1 eT [t]e[t]. A better criterion according

to the Gauss–Markov theorem (Ref. 26) is the weighted
least squares (WLS) criterion:

JWLS :=
1
N

N

∑
t=1

eT [t]Γ−1
e[t]e[t] =

1
N

eT [t]Γe−1e[t] (15)

which leads to the weighted least squares(WLS) estima-
tor:

θ̂
WLS =

[
ΦTΓ−1

e Φ
]−1[

ΦTΓ−1
e y

]
(16)

where Γe = E[eeT ] (Γe = Γe[t] ⊗ IN), where IN is the
N ×N unity matrix) designates the residual covariance

matrix, which is practically unavailable. Nevertheless, it
may be consistently estimated by applying (in an initial
step) ordinary least squares (Ref. 27). Once θ̂WLS is ob-
tained, the final residual variance and residual covariance
matrix estimates are calculated as:

σ̂
2
e (k, θ̂

WLS) =
1
N

N

∑
t=1

e2
k [t, θ̂

WLS]

Γ̂e[t] =
1
N

e[t, θ̂WLS]eT [t, θ̂WLS]

(17)

The problem of FP-AR model structure selection for a
given basis function family consists of model order de-
termination for the AR polynomials and determination of
their corresponding functional subspaces. Usually, the
AR model order is initially selected via customary model
order selection techniques (Bayesian Information Crite-
rion (BIC) and Residual Sum of Squares over Signal Sum
of squares (RSS/SSS)) (Ref. 28) from individual datasets
corresponding to a single cross-section or operating con-
dition (Ref. 29). A cross-section corresponds to a flight
state defined by a particular rotor degradation value, con-
sidered in the training dataset. Next, maximum func-
tional subspace dimensionalities are considered, which
define the search space of the functional subspace esti-
mation subproblem. The exact subspace dimensionalities
are decided by minimization of the BIC with respect to
the candidate basis functions as follows:

p , [1,2, . . . ,K1]

Next, the selection of the final dimensionality may be
based on minimization of the BIC (Ref. 30):

p̂ = argmin
p

BIC(p)

BIC(p) = lnL+dim(θ) · ln K1

N
where, L = ∑σ

2
e (ki)

∀ i = 1, ...,K1

(18)

The Residual sum of Squares over Signal Sum of Squares
(RSS/SSS) for all the cross-sections used in model esti-
mation is given by:

RSS
SSS

= ∑
∑

N
t=1 e2

ki
[t]

∑
N
t=1 y2

ki
[t]

∀ i = 1, . . . ,K1

(19)

Fault detection, identification and quantification

For tackling FDI, model residual-based methods use
functions of the residual sequences (known as the char-
acteristic quantity, Q) which are obtained by driving the
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current signal(s) (Zu) through the models estimated in the
baseline phase for different fault types (M1,M2). The key
idea is that the residual sequence obtained by a model that
truly reflects the current state of aircraft possesses cer-
tain distinct properties that are distinguishable from that
obtained from the other models. Residual-based meth-
ods are chosen over model parameters-based methods be-
cause they are computationally faster and therefore better
suited for online monitoring since they require no model
re-identification in the inspection phase.

Fault Detection Fault detection is based on the re-
parameterized FP-AR model of any fault mode (e.g. ro-
tor 1,2,..R), in terms of k (rotor degradation) and σ2

e (k).
Thus, the projection coefficients are replaced by the cor-
responding estimates available from the baseline phase,
while k containing the fault magnitude and the residual
series variance σ2

u (k) are the current unknown parame-
ters and are estimated from current unknown signal, yu[t]
as follows:

MV
(
k,σ2(k)

)
: yu[t] =

na

∑
i=1

ai(k) ·yu[t− i]+eu[t,k] (20)

The estimation of the currently unknown parameters k
and Σe(k) based on the current signals, may be achieved
via the following optimization:

k̂ = argmin
k∈Rm

N

∑
i=1

eT
u [t,k]eu[t,k]

σ
2
u (k̂) =

1
N

N

∑
t=1

eu[t, k̂]eT
u [t, k̂]

(21)

The steepest descent method is used to find the optimum
k̂.

Assuming that the system is indeed under a rotor fault
belonging to rotor type R (or healthy), k̂ may be shown
to be asymptotically (N → ∞) Gaussian distributed (k̂ ∼
N (k,σ2

k )) with mean as the true value k and covariance
σ2

k coinciding with the Cramér-Rao Lower Bound de-
noted as σ̂2

CRLB, and expressed as the following:

σ
2
u (k̂) =

[
N

∑
t=1

[
θ

T ·ϕu[t]⊗
δG(k)

δk
|k̂
][

θ
T ·ϕu[t]⊗

δG(k)
δk
|k̂
]T]−1

(22)

The derivation of the above expression is provided in Ap-
pendix C (Ref. 23).

Since the healthy aircraft corresponds to k = 0 (zero fault
magnitude) for any rotor fault model, fault is detection is
based on the following hypothesis testing problem:

H0 : k = 0 null hypothesis – healthy aircraft
H1 : k 6= 0 alternate hypothesis – rotor fault

(23)

Under the null (H0) hypothesis, the following statistic fol-
lows t-distribution with N−1 degrees of freedom (which
should be adjusted to N−2 in case the estimated mean is
subtracted from the residual series in the computation of
σ̂2

k ):

t =
k̂

σ̂k
∼ t(N−1) (24)

with σ̂k being the positive square root of σ̂2
k (estimated

standard deviation of k). This leads to the following test
at the α risk level (probability of false alarm, or type I
error, that is accepting H1 although H0 is true, being equal
to α):

t ≥ t1−α(N−1) −→ H0 accepted (healthy rotor)
Else −→ H1 accepted (faulty rotor)

(25)
where tα designates the t distribution’s (with the indicated
degrees of freedom) α critical point (defined such that
P
[
t ≤ tα

]
= α).

Fault Identification Fault (rotor) identification corre-
sponds to the examination of which one of the available
rotor FP-AR models provides, for its estimated k̂, a valid
representation of the current aircraft dynamics based on
residual uncorrelatedness (whiteness) hypothesis testing.
The current fault dynamics should correspond to the valid
model, which will exhibit an uncorrelated (white) resid-
ual sequence for the corresponding k̂.

Once a fault is detected, current rotor type determi-
nation is based on the successive estimation (using
the current data) and validation of the re-parameterized
MV
(
k,σ2(k)

)
FP-AR models for V = 1,2 corresponding

to the different faulty rotors. The procedure stops as soon
as a particular model is successfully validated, with the
corresponding faulty rotor identified as current. Model
validation may be based on a statistical test examining
the residual uncorrelatedness (whiteness) via the statisti-
cal hypothesis testing problem:

H0 : ρV [τ] = 0 τ = 1,2, ...,r Rotor V fault
H1 : ρV [τ] 6= 0 for some τ Not Rotor V fault

(26)
in which ρV [τ] = 0(τ = 1,2, ...,r) designates the residual
series normalized autocorrelation at lag τ . Under the null
hypothesis the following Q statistic follows a chi-square
(χ2) distribution with r degrees of freedom (Ref. 31):

Q = N(N +2) ·
r

∑
τ=1

(N− τ)−1 · ρ̂[τ]2 ∼ χ
2(r) (27)

in which N designates the residual signal length (in num-
ber of samples),ρ̂[τ] the estimated normalized autocorre-
lation at lag, τ and r the maximum lag. This leads to the

7



0 5 10 15 20 25 30 35 40

-10

0

10

Rotor 1 degradation

Healthy

50% degradation

100% degradation

0 5 10 15 20 25 30 35 40

-10

0

10

Rotor 2 degradation

Z
-a

c
c
e

le
ra

ti
o

n
 f

ro
m

 I
M

U
 (

m
/s

2
)

Time (s)

Figure 4: Z-acceleration signals from IMU for dif-
ferent rotor fault states.
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Figure 5: Z-acceleration signals at respective boom
tip for different rotor fault states.

following test at the α risk level:

χ2
ρ ≤ χ2

1−α
(r) =⇒ H0 accepted (rotor V is faulty)

Else =⇒ H1 accepted (rotor V is not faulty)
(28)

where χ2
1−α

(r) denotes the χ2 distribution’s 1−α critical
point.
It should be noticed that inability to identify a particular
rotor fault (obviously as not previously modeled) indi-
rectly implies fault detection.

Fault Quantification (Magnitude Estimation) Fault
quantification (magnitude estimation) is then based on
the interval estimate of k, constructed based on the
k̂, σ̂2

k estimates obtained from the corresponding re-
parameterized FP-AR model (of the form Eq.20) of the
current valid rotor fault. The interval estimate of k (fault
magnitude) at the α risk level is given as:[

k+ t α
2
(N−1)σ̂k k+ t1− α

2
(N−1)σ̂k

]
(29)

where tα designates the t distribution’s (with the indicated
degrees of freedom) α critical point (defined as P

[
t ≤

tα
]
= α) and σ̂k is the positive square root of the obtained

variance σ̂2
k .

RESULTS AND DISCUSSION
Data Generation

Flight simulation for the hexacopter was performed at
operating ranges specified in Table 1 with severe turbu-
lence according to the Dryden model. Figures 4 and 5

show time histories of z-acceleration from the aircraft
IMU (global sensors/signals) and accelerometers placed
at the respective boom tip (local sensors/signals), respec-
tively, for cases of healthy flight, 50% degradation and
complete failure of rotors 1 and 2. The local sensor read-
ings, i.e., the z-acceleration at the boom tip is placed at
the tip of boom 1 and 2, are used for analyzing rotor 1 and
2 faults, respectively. The global sensor readings, which
is the z-acceleration obtained from the aircraft IMU, are
also used for fault diagnosis of both types of rotor faults,
and compared with the corresponding of the local sen-
sors. For the simulation results presented, rotor failure
occurs at t = 10 s, is indicated by the vertical dashed
line. It should be noted that due to faults, the signals
show a sharp transient response before settling down to
a controller-compensated steady state. Fault detection
takes place in the transient part of the signal, whereas the
identification and quantification takes place in the fault
compensated steady state since the models are suitable
for modeling stationary signals only.

Non-Parametric Analysis of signals

Initially, the non-parametric analysis of the signals is pre-
sented in the frequency domain to provide a preliminary
idea of the aircraft dynamics under the different rotor
states. The Welch-based Power Spectral Density (PSD)
for the global and local signals, shown in Figures 4 and
5, revealed two dominant modes, i.e., the important dy-
namics of the system lie in the range of [0.02−1250] Hz.
Hence, the signals were filtered through a low-pass filter
at 1600 Hz and subsequently downsampled from an origi-
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Figure 6: Power spectral density of fault-
compensated z-acceleration signals from IMU
(global signals) for different rotor fault states.
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Figure 7: Power spectral density of fault-
compensated z-acceleration signals at the respec-
tive boom tips (local signals) for different rotor fault
states.

nal sampling frequency of Fs = 10 kHz to Fs = 3333 kHz,
such that the frequency range of interest is [0−1666] Hz.

The PSD of the global and local signals, shown in Fig-
ures 6 and 7, respectively were obtained by the Welch
method for a signal length N of 40 s (Fs = 3333 Hz, win-
dow size of 2000 samples, nfft of 2000 samples, overlap
of 95%; Matlab function pwelch.m). The z-acceleration
at the boom tip depends predominantly on the out-of
plane bending mode dynamics of each boom (states: ¨ηw1
and ¨ηw2 ). Therefore, the first two natural frequencies of
boom 1 and 2, can be clearly seen from Fig. 7, and tab-
ulated in Table 2 for booms 1 and 2 for three indicative
degradation of the respective rotor placed on them.

FP-AR Model Identification

The FP-AR model identification is based on stationary
signals, i.e., their statistical properties remain constant
over time. The signals become stationary after approx-
imately 5 s from the fault commencement due to con-

Table 2: Effect of rotor degradation on the respective
boom modes.

Boom Rotor Degradation (%)
(1st mode / 2nd mode in Hz)
0 50 100

1 148 / 1183 151 / 1190 152 / 1196
2 154 / 1183 152 / 1186 150 / 1199

troller compensation and these are used in the modeling
stage. Hence, for rotor fault identification and quantifi-
cation, only steady-state signals should be used. For FP-
model estimation for different rotor fault types, data at
0, 20, 40,...,100 % degradation of that rotor at forward
velocity of 5 m/s, and 2 kg gross weight was used. First,
conventional AR models representing the aircraft dynam-
ics are obtained through standard identification proce-
dures (Refs. 29, 32) based on the signals (N = 5000 sam-
ples, Matlab function arx.m) for the healthy and fault-
compensated complete rotor failure states. This is a pre-
liminary step required for providing approximate model
orders for the corresponding functionally pooled models
representing the aircraft dynamics for the entire range of
degradation. Next, the functionally pooled model for the
rotor faults is based on either global or local signals of the
same length obtained from a total of K1 = 6 simulations,
for covering the entire range of the respective rotor degra-
dation. Functional basis order selection starts with the
maximum functional search space consisting of 6 Cheby-
shev Type II polynomial basis functions (see Appendix
A). The final functional basis order selection is based on
the minimum BIC criterion and the selected model is val-
idated by checking the whiteness (uncorrelatedness) and
the normality of the model residuals (Matlab functions
acf.m and normplot.m, respectively) for all the fault mag-
nitudes considered (Refs. 18, 20).

In this section, indicative results for FP model identi-
fication of rotor 1 faults with global sensor signals are
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Figure 8: FP-AR Model Structure Selection

discussed. First, the model order has been selected as
na = 43 via the BIC from the z-acceleration signals ob-
tained from the IMU of a healthy aircraft. Next, the func-
tional order was selected as (p = 2) based on the mini-
mum BIC criterion (Eq. 18), as depicted in Fig. 8. This
implies that the model parameters representing the air-
craft vary linearly with the extent of front rotor degrada-
tion. This is also reflected in Fig. 9, which shows the first
4 parameters of the FP-AR(43)2 model of rotor 1 faults as
a continuous function of the fault magnitude. Also, this
model exhibits a very low RSS/SSS value of 7.6×10−3%
(Fig. 8) demonstrating accurate identification and excel-
lent dynamics representation of the aircraft z-acceleration
signals at modeled rotor 1 faults and severe turbulence.

The FP-AR models for rotor 1 and 2 faults estimated with
the global and local signals obtained from the post-failure
fault-compensated stationary state are identified in a sim-
ilar way. The global models are identified with N = 5000
samples of the signals. However, the local signals are
very sensitive to rotor degradation. Therefore the local
models are identified with N = 1000 samples as a longer
signal is not required for effective model estimation. This
also results in improved generalization capability, ensur-
ing that the models can account for the uncertainty in the

Table 3: Model identification summary results.

Fault Signals Model Samples per
Type Used Selected Parameter

Rotor 1 Global FP-AR(43)2 58
Faults Local FP-AR(16)2 31

Rotor 2 Global FP-AR(38)2 65
Faults Local FP-AR(12)2 41

Model order is denoted in brackets
Functional order is denoted in subscript
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Figure 9: FP-AR Model parameters vs degradation

Figure 10: Model residual-based rotor degradation esti-
mation

signals. The summary of all the models employed in this
study is provided in Table 3.

Fault detection, identification, and quantification

In the online monitoring phase, the current (unknown)
signals are filtered through the baseline models to obtain
the corresponding residuals, and the fault detection, iden-
tification, and quantification is followed by inspecting the
properties of those residuals as shown in Fig. 3. Note that
for fault detection and identification it is convenient to
use global signal since the same signals can be filtered
through both models M1 and M2. If we use the local
signals for this step, this process needs to run in paral-
lel twice, once with the signals obtained from boom 1
and the other with signals obtained from boom 2. The
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Figure 11: Indicative fault detection results for different rotor faults and various degradation levels. The
t-statistics obtained via the rotor 1 and 2 models are shown by blue and yellow bars, respectively. The
critical point at the α = 0.05 risk level is shown by the red dashed horizontal lines. A fault is detected if
the t-statistics exceed the critical point.

complexity may increase with more types or modes of
faults considered in later studies. The local signals can be
used for better fault quantification, once the fault is iden-
tified and it is known that the signals coming from which
boom needs to be analyzed. Since the rotor thrust will
decline with rotor degradation, it is hypothesized that the
local signals can capture the change in dynamics with ro-
tor fault magnitude in a more sensitive fashion. Note that
for the fault detection and identification results discussed,
the signals used are global signals, unless specified oth-
erwise. The performance of fault quantification has been
assessed for both global and local signals.

In this method, the current (unknown) signals are fil-
tered through the different rotor fault type models, re-
parameterized with all possible values of rotor degrada-
tion. The estimation of rotor degradation for different
fault types is obtained through minimizing the one-step-
ahead prediction error, as illustrated in Fig. 10. Next, the
fault diagnosis proceeds in three steps: detection, identi-
fication or classification, and quantification, as discussed
in the following sections.

Fault Detection Fault detection is achieved in an on-
line, real-time manner through taking a 1 s (N = 3333
samples) moving window of the current signal with the

window being updated every 0.1 s. Then, the windowed
data is used to estimate the rotor degradation values, ˆk1u
and ˆk2u and their corresponding variances from M1 and
M2, respectively. These are used to construct the corre-
sponding t-statistics given by Eq. 24, and the statistical
limit is constructed at α = 0.05 to perform the hypothe-
sis testing to determine faults (Eq. 25).

Figure 11 shows indicative fault detection for a single
time window, at the instant of fault initiation, for both
rotor 1 and 2 and fault magnitude ranging from healthy
to complete failure. The t-statistics obtained via model
M1 and M2 are shown in blue and yellow bars respec-
tively. The critical limit is shown in red dashed horizon-
tal lines. It has been observed that the fault detection is
fast, within 2 s of the fault commencement. In this figure,
the first and second columns of the subplots presents the
fault detection results for the rotor 1 and 2 fault signals,
respectively. The top and bottom row are for the rotor 1
and 2 models, respectively being used to filter and ana-
lyze the signals. The signals for rotor degradation of 0%
yield t-statistics that lie below the critical limit, for both
M1 and M2, correctly denoting that the aircraft is healthy.
For 10% degradation of rotor 1, the test statistics obtained
with the rotor 2 fault model lie below the critical limit (as
seen in the bottom-left figure), but it is detected via the
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Figure 12: Indicative fault identification results for different rotor faults and degradation levels. The
Q-statistic for the hypothesis of the current fault belonging to rotor 1 or 2 is shown in blue and yellow
bars, respectively. The critical point at the α = 0.05 risk level is shown by the red dashed horizontal
lines. A hypothesis is accepted –and the corresponding rotor fault is accepted as true– if its Q-statistic
lies below the critical point.

rotor 1 fault model. For all other rotor degradation, the
test statistics exceed the statistical limit, thereby detect-
ing a fault.

Fault Identification Once a fault is detected, the identi-
fication is performed only after the fault is compensated
by the controller because the identified models represent
the steady-state dynamics. This is determined by moni-
toring the signal variance, which is high during the tran-
sient response but settles down to a low and constant
value when they become stationary again (Refs. 20, 32).
After that 5 s of fault-compensated global z-acceleration
signal is used for estimating rotor degradation via the two
models M1 and M2, denoted as ˆk1u and ˆk2u respectively.
The same signal filtered through M1 re-parameterized by
ˆk1u and M2 by ˆk2u to generate two sets of residuals. The

fault is classified as the one for which the resulting resid-
uals are white or serially uncorrelated.

Indicative rotor fault identification results for “unmod-
eled” fault magnitude (20, 40, 60, 80 and 100% degrada-
tion) are presented in Fig. 12. The hypotheses of the cur-
rent fault belonging to rotor 1 or 2 using the correspond-
ing FP-AR model are presented in the blue and yellow

bars respectively. The autocorrelation function of the two
residual sequences with maximum lag τ = 20 has been
considered as the test statistics. One of these hypothe-
ses is accepted if the corresponding Q-statistic is lower
than the 95% statistical limit shown in the red dashed
horizontal line (Eq. 27 and 29). It is observed that for
signals corresponding to rotor 1 degradation the rotor 1
fault model (re-parameterized by ˆk1u) yields white resid-
uals whereas the rotor 2 model (re-parameterized by ˆk2u)
yields correlated residuals shown by the blue bars lying
below the critical limit and the yellow bars violating the
critical limit, respectively in the top subplot of Fig. 12.
Similarly, correct fault identification for rotor 2 faults of
varying magnitude has been demonstrated in the bottom
subplot.

Fault Quantification (Magnitude Estimation) Next,
fault quantification is performed via the identified faulty
rotor model, MV reparameterized with the corresponding
degradation estimate, kVu, where V = 1 or 2. It has been
observed that with the z-acceleration signal from the air-
craft IMU accurate quantification can be achieved with
5 s of steady-state fault-compensated signals. The effec-
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Figure 13: Indicative rotor 1 fault quantification based on global signals (IMU z-acceleration) along with the cor-
responding 95% confidence intervals. The true value of degradation lies between the 95% confidence intervals,
implying correct fault magnitude estimation.

tiveness of the fault diagnosis method is now assessed
with a few indicative rotor degradation results. It should
be noted that the fault magnitudes in these results do not
coincide with those used in the baseline (training) phase.
Figure 13 shows indicative fault quantification results of
rotor 1 at “unmodeled” degradation levels of 10 and 70
% with the global signal. In this figure, the rotor 1 fault
has been estimated with one window of 5 s of the global
signal. The estimated value being shown by the green
vertical line corresponds to the minimum residual sum
of squares or the squared error (shown by the light blue
curve) obtained via the global rotor 1 fault model (FP-
AR(43)2). The 95% confidence region is shaded in green
(Eq. 29), and the true value of the fault magnitude shown
by the red vertical line lies in between them, demon-
strating correct fault quantification at both indicative fault
magnitudes. The width of 95% confidence intervals, in
case of fault magnitude estimation with a various time
windows of the global signal, ranges from about 16 to
20%.

As discussed before, this step is performed after fault
identification, and the local signals, corresponding to the
boom on which the faulty rotor is located, can also be
used. Figure 14 show the fault quantification of rotor 1 at
the same degradation levels as Fig. 13, but with the local
signal. When the z-acceleration measured at boom 1 tip
is used with the local rotor 1 fault model (FP-AR(16)2),
even 1 s of signal window can accurately quantify ro-
tor 1 degradation. Here, the estimated fault magnitude,
k̂ from for one such time window of the local signal is
shown by the blue vertical line. The 95% confidence re-

gion is shaded in blue, and the true fault magnitude lies in
that region, which is observed to be about 60% narrower
than that obtained with the global signal. Therefore, fault
quantification with the local signal is faster (lesser signal
length), more accurate, and precise.

Similar results have been obtained with rotor 2 faults, and
a few indicative cases for it will be discussed in the con-
text of comparing the fault quantification performance of
global and local signals.

Comparison between local and global sensors for fault
quantification

From Figures 13 and 14, it is evident that the local sig-
nals are more sensitive to the rotor 1 fault magnitude.
This has also been verified by rotor 2 fault quantification
at two indicative fault magnitude of 20% and 80% with
the z-acceleration from IMU and the z-acceleration of the
boom 2 tip signals. For comparison of the effectiveness
of fault quantification by local and global signals 2 s win-
dow of both are analysed by their corresponding baseline
models, and the results are presented in Fig. 15. It can be
clearly seen that local sensors outperform the global sen-
sors in both accuracy and precision of fault quantification
for both front and side rotor. Accuracy is defined by the
difference between the estimated and the true value of
degradation and the precision is defined by the tightness
of the statistical confidence interval. The average error
of estimation with global signal is 5.55% and the aver-
age width of uncertainty interval is 18.44%. These fig-
ures improve when local signals are used, with average
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Figure 14: Indicative rotor 1 fault quantification based on local (boom z-acceleration) signals along with the cor-
responding 95% confidence intervals. The true value of degradation lies between the 95% confidence intervals,
implying correct fault magnitude estimation.

Figure 15: Comparison of rotor 2 fault quantification via global and local signals. Correct fault magnitude esti-
mation has been achieved by both the sensors. Local signals show improved accuracy and narrower confidence
intervals than the global signals.

error of 1.55% and the average statistical confidence in-
tervals range of 7.05%. These values are calculated from
estimation results from several time windows and fault
magnitudes.

CONCLUSIONS

A sensor signals based statistical time series method that
is capable of effective fault detection, identification, and
magnitude estimation within a unified framework is intro-

duced. The method is based on the FP models and proper
statistical decision-making schemes. FP models are ca-
pable of accurately representing an aircraft under rotor
faults for a continuum of fault magnitudes of a particular
rotor fault type. These models for different rotor faults on
a multicopter can be identified from available time-series
sensor data in the baseline phase. In its inspection phase,
there are three distinct steps taking place within a prob-
abilistic framework: step I involves fault detection, step
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II involves fault identification, and step III involves pre-
cise fault quantification within the identified type of fault.
Fault magnitude is continuous, involving an infinite num-
ber of potential fault magnitudes ranging from healthy to
complete failure. The validity and effectiveness of the
method have been assessed via a proof-of-concept ap-
plication to rotor fault diagnosis on a hexacopter. Front
and side rotor degradation of different magnitudes occur-
ring on the aircraft was simulated by reducing the com-
manded rotor speed. Indicative results for “unmodeled”
rotor degradation shows that the method is effective in de-
tecting abrupt faults, identifying the correct faulty rotor,
and then determining the fault magnitude precisely while
providing estimation uncertainty bounds.
The main conclusions drawn from this study are summa-
rized as follows:

• The study – including the proof-of-concept applica-
tion – has demonstrated that effective fault detec-
tion, fault mode identification, and fault magnitude
estimation are possible based on partial models of
the aircraft dynamics and a very limited number of
sensors (even with a single response signal from the
IMU). This is in sharp contrast to methods requiring
detailed and “complete” models (such as analytical
models) and a multitude of sensors.

• In addition, the study has substantiated that a signif-
icant amount of information about the health state
of the aircraft is available even in a single response
signal (here, body and boom accelerations). Thus,
an important message is that it may not be necessary
to employ a “high” number of sensors for precise
fault diagnosis; instead, a “few” sensors and power-
ful signal analysis for extracting the embedded in-
formation may be much more practical and effective
approach.

• Robust rotor fault detection, identification, and
quantification for a hexacopter in forward flight have
been achieved under severe turbulence based on pre-
determined statistical confidence levels.

• An important observation is that fault quantification
performance is improved via the use of local sen-
sors (boom accelerations) compared to global sen-
sors (body acceleration), as indicated by the accu-
racy of fault size estimation and tighter uncertainty
bounds.

• The method may operate on any type (acceleration,
rate gyros, strain gauges) of sensor signals.
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APPENDIX

A. Signals

The data used in this study are obtained from simulation
rather than experiments and therefore the sensor signals
need to be calculated from the available aircraft states.

Generally, Inertial Measurement Units (IMUs) are com-
posed of a 3-axis accelerometer and a 3-axis gyroscope
and outputs the body accelerations (x, y, and z acceler-
ation) and the angular rates (roll, pitch, pitch and yaw
rates), which can be determined from 12 rigid body states
are defined in Eq. 1 as follows:

Body accelerations =
[
u̇ v̇ ẇ

]T
Angular rates, ω =

[
p q r

]T (30)

These signals are referred to as global signals.

The sensors mounted on the different locations on the in-
dividual booms, such as strain gauges and accelerome-
ters are referred to as the local signals. These can be
computed from the individual booms modal deformation

Figure 16: Position of a boom with respect to the
hub and its deformations

states and shape functions ( Eqs. 5 and 3) using the fol-
lowing expressions:

Total deformation, q =

{
∑

2
i=1 φwi(l)ηwi Out-of-plane

∑
2
i=1 φvi(l)ηvi In-plane

Strain, ε =

{
∑

2
i=1 φ ′′wi

(l)ηwi ×a/2 Out-of-plane

∑
2
i=1 φ ′′vi

(l)ηvi ×b/2 In-plane
(31)

where, a and b are the width and height of the cross-
section of the boom, respectively. l is the distance from
the boom root where the sensor has been placed, normal-
ized by the boom length.

Table 4: Boom properties

Parameters Value
Boom Length (L) 0.2617 m
Material Aluminium
Cross-section Hollow square
Outer dimension 0.0156 m
Inner dimension 0.0130 m
Flexural Rigidity 179 Nm2

The accelerometer readings on each of the boom can be
calculated as:

Acceleration =r̈+ω× ṙ+ ω̇× r+ω×ω× r (32)

where,

Distance of accelerometer from the hub, r

=

−Lcosζ

Lsinζ

−d

+
−∑

2
i=1 φvi(l)ηvi sinζ

−∑
2
i=1 φvi(l)ηvi cosζ

∑
2
i=1 φwi(l) ¨ηwi


Here, ζ is the azimuth angle of the boom (See Fig. 16), L
is the length of the boom and d is the vertical position of
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the boom from the center-of-gravity of the aircraft. The
boom properties are given in Table 4.

Note that these derivations are shown for a single time in-
stant, t. Repeating this computations for the entire range
of time will generate the time-series sensor data.

B. Basis Functions

The univariate polynomials used in this study in are the
shifted Chebyshev polynomials of the second kind (Type
II Chebyshev polynomials), which belong to the broader
family of Chebyshev orthogonal polynomials. These
polynomials obey the following recurrence relation:

a1,nGn+1(x) = (a2,n +a3,nx)Gn(x)−a4,nGn−1(x)

x ∈ [0,1]⊂ R
(33)

with a1,n = a4,n = 1,a2,n = −2,a3,n = 4, and G0(x) =
0,G1(x) = 1.

Hence, the first five shifted Chebyshev polynomials of the
second kind are:

P0 = 1
P1 =−1+2x

P2 = 1−8x+8x2

P3 =−1+18x−48x2 +32x3

P4 = 1−32x+160x2−256x3 +128x4

(34)

In the present framework, where the variable is the rotor
degradation (k) and it is scaled as follows:

x ∈[0,1]⊂ R, x = k/kmax (35)

C. Cramér-Rao Lower Bound for operating parame-
ter vector, k estimates

For estimation of k from unknown signal, yu[t]:

yu[t] =
na

∑
i=1

ai(k) · yu[t− i]+ eu[t,k]

k̂ = argmin
k∈R1

N

∑
i=1

eT
u [t,k]eu[t,k]

σ
2
u (k̂) =

1
N

N

∑
t=1

eu[t, k̂]eT
u [t, k̂]

(36)

Now, k̂ is assumed to be asymptotically (N → ∞) Gaus-
sian distributed with k̂ ∼N (k,σ2

k )

The log-likelihood function of k̂ based on N samples of
unknown signal is given by:

lnL (k̂,σ2
u (k̂)) =−

N
2

ln(2π)− N
2

ln(σ2
u )

−1
2

N

∑
t=1

eT
u (k̂), t)eu(k̂), t)

σ2
u (k̂)

(37)

The Cramér-Rao Lower bound for σ2
k is given by:

σ
2
CRLB =

[
E
[(δ lnL (k,σ2

u )

δk

)(δ lnL (k,σ2
u )

δk

)T
]]−1

= σ
2
u (k)

[
N

∑
t=1

ε(k, t)ε(k, t)T

]−1

(38)

where,

ε(k, t) =
δeT

u (k, t)
δk

which can be simplified from Eq. 12 as follows:

ε(k, t) =
δ

(
yu[t]−

[
ϕT

k [t]⊗GT (k)
]
·θ
)T

δk

= 0−θ
T ·ϕu[t]⊗

δG(k)
δk

(39)

Finally, the Cramér-Rao Lower bound for the estimated
value of k, k̂ can be written as:

σ
2
CRLB(k̂) = σ

2
u (k̂)

[
N

∑
t=1

ε(k, t)|k=k̂ε(k, t)|Tk=k̂

]−1

= σ
2
u (k̂)

[
N

∑
t=1

[
θ

T ·ϕu[t]⊗
δG(k)

δk
|k̂
][

θ
T ·ϕu[t]⊗

δG(k)
δk
|k̂
]T]−1

(40)
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